
SFA Modernization Partner
United States Department of Education

Student Financial Assistance

EAI Core Architecture

EAI Application Enablement Guide

Release 2.0

Task Order #54

Deliverable # 54.1.7

October 31, 2001

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 2

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 6

1.1 PURPOSE .. 6

1.2 APPROACH... 6

1.3 DESCRIPTION OF SECTIONS.. 6

1.4 SCOPE ... 7

1.5 INTENDED AUDIENCE ... 7

2 MQSERIES ARCHITECTURE CONVENTIONS AND GUIDELINES 8

2.1 MQSERIES NAMING GUIDELINES .. 8
2.1.1 Common Rules... 8
2.1.2 Queue Manager... 9
2.1.3 Local Queues... 11
2.1.4 Remote Queues.. 12
2.1.5 Alias Queues.. 12
2.1.6 Model and Dynamic Queues ... 13
2.1.7 Transmission Queues .. 13
2.1.8 Dead Letter Queues... 14
2.1.9 Initiation Queues ... 14
2.1.10 Processes... 15
2.1.11 Channels.. 15

2.2 MQSERIES APPLICATION MESSAGING INTERFACE (AMI) NAMING GUIDELINES... 16
2.2.1 Service Points.. 16
2.2.2 Policies .. 17

2.3 USING A MQSERIES OBJECT.. 18
2.3.1 Channels.. 18
2.3.2 Queues... 18

2.4 MQSERIES MESSAGING IMPLEMENTATION GUIDELINES... 19

2.5 MQSERIES CLUSTER DESIGN GUIDELINES ... 20
2.5.1 Selecting Queue Managers to Hold Repositories.. 20
2.5.2 Organizing a cluster.. 21
2.5.3 Overlapping clusters ... 22
2.5.4 In the Unlikely Event of a Repository Failure... 23
2.5.5 Cluster channels.. 23

2.6 MQSERIES CLUSTER IMPLEMENTATION GUIDELINES .. 24

2.7 SFA CLUSTER SPECIFICS.. 24
2.7.1 Physical layout of the cluster .. 24

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 3

2.8 MQSERIES WEBSPHERE DESIGN GUIDELINES ... 31
2.8.1 WebSphere Connectors ... 31
2.8.2 Architecture look and feel ... 32
2.8.3 SFA EAI WebSphere Reusable Component... 33

3 SFA APPLICATION ENABLEMENT GUIDELINES 34

3.1 APPLICATION PROGRAMS AND MESSAGING... 34

3.2 APPLICATION USAGE GUIDELINES FOR MQSERIES ... 34
3.2.1 Identifying an Application for a Queue Manager ... 35
3.2.2 Opening and Closing Queues.. 36
3.2.3 Putting Messages On A Queue.. 37
3.2.4 Getting Messages From A Queue.. 37
3.2.5 Queue Manager Connectivity Guidelines ... 38
3.2.6 Connecting To and Disconnecting From a Queue Manager .. 38
3.2.7 Pass the Connection Name as a Program Parameter... 39
3.2.8 Messaging Using More Than One Queue Manager.. 39

3.3 APPLICATION USAGE GUIDELINES FOR MQSERIES APPLICATION MESSAGING
INTERFACE (AMI) ... 40

3.3.1 AMI Connectivity Guidelines .. 40
3.3.2 Establishing and Terminating AMI Sessions... 40
3.3.3 AMI Sender and AMI Receiver Objects... 41

3.4 APPLICATION INTERFACE PROGRAMMING OPTIONS FOR MESSAGE QUEUE
INTERFACE (MQI) ... 42

3.4.1 Message Delivery .. 42
3.4.2 Message Content ... 43

3.5 EAI COMMON ERROR HANDLING GUIDELINES... 44
3.5.1 Failure of a MQI Call ... 44
3.5.2 System Interruption ... 44
3.5.3 Unable to Process Messages... 45
3.5.4 Responding to Errors .. 45

3.6 TRIGGERED QUEUES AND APPLICATIONS.. 45
3.6.1 Designing MQSeries Applications .. 45
3.6.2 Starting MQSeries Applications.. 47

4 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGES) 48

4.1 MQSERIES APPLICATION ADAPTER.. 48

4.2 ADAPTER CLASSIFICATIONS.. 48
4.2.1 Type of Message .. 48
4.2.2 Interface Type.. 48

4.3 MQSERIES-CICS/ESA BRIDGE.. 49
4.3.1 Using the CICS Bridge.. 49
4.3.2 CICS Bridge at Work... 49

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 4

4.4 RUNNING CICS DPL PROGRAMS .. 50
4.4.1 Running CICS 3270 transactions.. 51

5 APPLICATION INTEGRATION 53

5.1 LEGACY SYSTEM APPLICATION EAI INTEGRATION CONSIDERATIONS................... 53

5.2 CENTRAL PROCESSING SYSTEM (CPS)... 54

5.3 DIRECT LOAN SERVICING SYSTEM (DLSS) ... 55

5.4 ELECTRONIC CAMPUS BASED SYSTEM (ECBS) ... 55

5.5 FINANCIAL MANAGEMENT SYSTEM (FMS) .. 57

5.6 LO SYSTEM – ELECTRONIC MASTER PROMISSORY NOTE (EMPN) 59

5.7 LO SYSTEM – PROMISSORY NOTE IMAGING (P-NOTE IMAGING)................................ 61

5.8 NATIONAL STUDENT LOAN DATA SYSTEM (NSLDS) ... 61
5.8.1 NSLDS Batch... 62
5.8.2 NSLDS Transaction... 64

5.9 POST-SECONDARY EDUCATION PARTICIPANTS SYSTEM (PEPS)................................ 64

5.10 STUDENT AID INTERNET GATEWAY (SAIG/BTRADE) .. 65

6 REUSEABLE EAI FUNCTIONS 66

6.1 EAI COMMON LOG FUNCTION.. 66
6.1.1 Interface Design Specification .. 66
6.1.2 Interface Overview .. 66
6.1.3 Design Assumptions .. 70
6.1.4 Design Dependencies .. 71
6.1.5 Detailed Technical Design .. 71

7 COMMITTING AND BACKING OUT UNITS OF WORK 73

7.1 COMMITTING AND BACKING OUT .. 73

7.2 SYNCPOINT COORDINATION, SYNCPOINT, UNIT OF WORK... 73

7.3 SYNCPOINT GUIDELINES... 73
7.3.1 Syncpoints in MQSeries for Windows NT, MQSeries on UNIX systems 74
7.3.2 Local units of work.. 74
7.3.3 Global units of work.. 74
7.3.4 Internal syncpoint coordination .. 74
7.3.5 External syncpoint coordination ... 75
7.3.6 Interfaces to external syncpoint managers.. 76

7.4 MQSERIES SYNCPOINT CALLS FOR OS/390 ... 77

7.5 MQSERIES SYNCPOINT CALLS ON WINDOWS NT AND UNIX SYSTEMS.................... 77

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 5

7.6 SINGLE-PHASE COMMIT .. 78

7.7 TWO-PHASE COMMIT ... 78

8 APPENDIX A: REFERENCE MATERIAL 79

9 APPENDIX B: GLOSSARY 81

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 6

1 EXECUTIVE SUMMARY

1.1 PURPOSE

The EAI Application Enablement Guide was developed in support of the Department of Education’s
Student Financial Assistance (SFA) Modernization Program, to provide an overview of the MQSeries
Messaging functionality being implemented as part of the Enterprise Application Integration (EAI)
project. The EAI provides a standard reusable architecture for connecting disparate, heterogeneous
systems through common middleware architecture. The EAI architecture is built using MQSeries
Messaging and MQSeries Integrator. This deliverable defines the guidelines for enabling SFA
application developers to design and implement applications utilizing the features of the EAI Core
architecture, as defined for the initial release.

The deliverable also serves to provide a high level overview of the features and capabilities of the SFA
EAI Messaging infrastructure architecture and product capabilities. This deliverable should be the initial
reading for all application developers who will be developing applications to utilize the EAI Bus at SFA.
In addition, this deliverable will document the Release 1.0 and 2.0 EAI Core Architecture for the legacy
systems MQ Adapters and their applicability for use in connecting to each Release 1.0 and 2.0 legacy
system.

The document is intended to be a living document and a repository of MQSeries best practices and
guidelines, which can be adopted by SFA for the implementation of EAI applications.

1.2 APPROACH

The following approach was used to develop the EAI Application Enablement Guide deliverable:

• Review and modify IBM best practices to meet the SFA EAI Core Architecture requirements

• Incorporate additional steps required for applications to integrate and utilize the SFA EAI Core
Architecture

1.3 DESCRIPTION OF SECTIONS

This deliverable is divided into the following sections:

• Section 1 – Executive Summary

This section provides an introduction and overview of the EAI Application Enablement Guide.

• Section 2 – MQSeries Architecture Conventions and Guidelines
This section will provide guidance on naming conventions for using MQSeries in the SFA EAI
architecture. The guidelines provide guidance in defining and implementing MQSeries objects.

• Section 3 – SFA Application Enablement Guidelines

This section provides an overview of messaging and provides specific steps an application needs to perform
in order to connect to a queue manager and to send and receive messages.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 7

• Section 4 – Application Connectivity (Adapters and Bridges)

This section discusses the use of adapters and bridges. Adapters handle data inbound-to and outbound-
from the application or environment. A bridge is a software component that moves data between a message
on a queue and an application or environment.

• Section 5 – Application Integration
This section will provide guidance on integrating SFA Applications to utilize the EAI Core Architecture.

• Section 6 – Reusable EAI Functions

This section describes reusable EAI functions that can be utilized by applications integrated with the EAI
Core Architecture.

• Section 7 – Committing and Backing Out Units of Work
This section describes how to commit and back out any recoverable get and put operations. It also
describes applications and their use of operating under syncpoint control.

• Section 8 – Appendix A: Reference Material

This section provides URL links to on-line documentation referenced within this document.

• Section 9 – Appendix B: Glossary

This section provides a glossary of MQSeries related terms and abbreviations.

1.4 SCOPE

The EAI Application Enablement Guide is a strategic component of the overall SFA enterprise
architecture. The scope of this deliverable is to provide guidelines and best practices for designing and
implementing applications which will utilize the services provided by the EAI core architecture. The
guidelines defined in this deliverable are based on best practices and provide a structured approach for
defining a consistent and maintainable environment to provide a framework for application developers to
have consistent look and feel in developing EAI components. The deliverable also provides a set of
reusable components for developing applications to utilize the features of the EAI Bus on each Release
1.0 and 2.0 legacy system.

1.5 INTENDED AUDIENCE

The EAI Application Enablement Guide document is intended for application teams who need to
understand the services and capabilities provided by the EAI Core Architecture. The contents of this
document should be utilized and built upon in accordance with requirements for applications integrating
with the EAI Core Architecture.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 8

2 MQSERIES ARCHITECTURE CONVENTIONS AND GUIDELINES
SFA has not previously utilized MQSeries as part of its existing middleware infrastructure therefore no
standards currently exist. This section will provide guidance on naming conventions for using MQSeries
in the SFA EAI architecture. These guidelines are meant to provide guidance in defining and
implementing MQSeries objects.

These standards have been developed in conjunction with the AIS group from Computer Science
Corporation, which will be responsible for monitoring SFA queue managers.

2.1 MQSeries Naming Guidelines

This section defines MQSeries Messaging naming guidelines for MQSeries objects within SFA’s
enterprise technical architecture.

2.1.1 Common Rules

All MQSeries names should follow MQSeries naming conventions, rather than the standard for object
names on each supported platform. Key standards and guidelines:

• Use all upper case letters (some platforms default text to upper case and MQSeries names are case
sensitive)

− MQSeries allows both upper and lower case letters in its names. However, MQSeries names are case-
sensitive. Using lower and uppercase characters for object names is a common source for naming
errors.

• Refrain from using % in names

− This character is valid in all MQSeries names, although it is not commonly used in other names across
platforms.

• Limit names to alpha–numeric characters
− Exceptions are the special characters [_ / .]

• Choose meaningful names within the constraint of the standard.

− Using meaningful names aids the MQSeries Administrator in maintaining the MQSeries environment.

− There is no required structure, or hierarchy, in an object name, such as may be found on many
systems' file names. MQSeries only compares the name strings.

− These standards recommend using hierarchical names under certain conditions. One such example is
to use a suffix where there are multiple “instances” of an object.

• Document object names and always include a description.

− All objects have a DESCR attribute for this purpose. MQSeries does not act on the value, but it
provides additional information as to the function of the queue.

• Choose meaningful names for new MQSeries interfaces.
− Each application to be integrated using MQSeries creates one or more MQSeries interfaces. The

MQSeries interface defines or exposes some application to the outside world. Implied in an interface is
a level of reliability and performance commonly referred to as a contract. Any other component can

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 9

request and receive a service by awareness and compliance with a defined interface. The application
does not need to know how or where the service is performed. The interface becomes a DMZ between
an application and the outside world, so changes to the interface may cause repercussions across all
users of the interface. XML has become one solution to the static nature of interfaces because it allows
for self-defining and extensible interfaces. Still XML does not solve all issues and problems with
interface definitions.

• Name an interface for what it does and is, because MQSeries interface names tend to surface in the
naming of MQSeries components related to the interface.

• Save the definitions
There are a number of reasons for saving the definitions:

− In the case of a system failure, objects may need to be recreated. To perform this function, the
definitions need to be saved separately from the queue manager.

− They can be used to reset the attributes to a known state. For example if triggering has been turned
off, or GET or PUT disabled, it is helpful to be able to restore the objects to their initial state.

− The definitions can supplement the MQSeries documentation.

2.1.2 Queue Manager

A queue manager provides the messaging and queuing services to application programs through Message
Queue Interface (MQI) program calls. Queue manager names are created at the sole discretion of
MQSeries administrators. The following guidelines should be followed when naming queue managers:

• Assign unique names to all queue managers

− This recommendation can often cause significant problems if queue manager names are not unique.
(On MVS, the queue manager name must also be distinct from other subsystem names on the same
MVS.)

− A queue manager can be understood as a “container” for queues and related objects. There is typically
one per system, but additional queue managers can be defined.

− Queue Managers with the same name can be configured to exchange messages - by using Queue
Manager aliases. This is strongly discouraged. There are some examples where this can lead to
ambiguity, and messages can then be sent to the wrong queue manager.

o If ReplyToQMgr is left blank in the Message Descriptor, MQSeries inserts the actual local
Queue Manager name, not its alias.

o Dead Letter Queue messages identify the real Queue Manager, not any alias.

• Do not copy documentation examples

− Copying the documentation examples provided with the installation files is an easy way to produce
queue managers with duplicate names. Plan for the names of queue managers ahead of time.

• Keep the queue manager name short and meaningful
A recommendation would be to make queue manager names the same as the network host name. However,
keep the following points in mind:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 10

− On MVS, the queue manager name corresponds to the MVS subsystem name. Therefore, the queue
manager name is restricted to four characters.

− Many queue managers use the first eight characters when generating unique message identifiers.

− Channel names, which by convention are derived from queue manager names, are limited to 20
characters.

− If there were no obvious name, most users would adopt a convention for constructing a queue
manager name. Make sure that the convention provides for further expansion, particularly where the
restricted names on MVS are concerned.

• For a Queue Manager alias, use the naming conventions for the specific platform

− This feature is usually related to defining multiple channels between a pair of queue managers.

2.1.2.1 Naming Convention for MQSeries Queue Manager for Mainframe (CPS and NSLDS on
OS/390)

Naming examples for MQSeries queue managers on the OS/390 are illustrated below. OS/390 queue
manager names are limited to 4 characters in length.

Examples:

 QMP1

QM – Indication that STC(Started Task) is for a queue manager

 P – Production (D(development), P(production), or T(test))

 1 – First instance

 QMP2

 QM – Indication that STC(Started Task) is for a queue manager

 T –Test (D(development), P(production), or T(test))

 2 – Second instance

2.1.2.2 Naming convention of the MQSeries Queue Managers for all other platforms

On Non-MVS platforms the queue manager name should not exceed 8 characters. Queue manager names
on distributed platforms will be based on the nature of the work performed, with indicators for
environment and distance. For example, EAIBUSP1 is the first instance of a production queue manager
on the EAI Bus. PEPSD1 would be the first instance of a queue manager in the PEPS development
environment.

Examples:

SAIGT1

 SAIG – Student Aid Internet Gateway queue manager

 T – Test(D(development), P(production), or T(test))

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 11

 1 – First instance

Queue Manager Names can also have aliases. This adds another layer of “insulation and abstraction” from
the underlying object name. Message routing using alias queue manager names is an example of their use.
Consolidation of multiple queue managers to one queue manager is also a way to make use of queue
manager alias names to minimize the impact of the consolidation on MQSeries application programs and
the MQ Administrator. Although queue manager alias objects are defined via remote queue definitions,
they should be named according to queue manager naming guidelines.

2.1.3 Local Queues

As a rule, applications will never reference local queues directly but will always access them via alias
queues.

A local queue object defines a local queue belonging to the queue manager to which applications are
connected. The following guidelines should be adhered to when naming local queues:

• Local queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Local queue names should not include the name of the queue manager or an indication of the platform
used.

• Local queue names should not indicate that the queue is local.

• Local queue names should not include the words local or queue (unless relevant in the context of the
application).

• Local queue names should be of the form:

FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

− The first node is five or six characters indicating the name of the system that owns the object.
This will be useful when applications from multiple business units share the same machine/queue
manager.

− The second node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The third node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The fourth node is any number of characters, such that entire queue name does not exceed 48
characters in length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

Examples:
SAIG.GETMAIL
SAIG.ONLINE.COD.GETMAIL
SAIG.COD.GETMAIL

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 12

2.1.4 Remote Queues

As a rule, applications will never reference remote queues directly but will always access them via alias
queues.

A remote queue object identifies a queue belonging to another queue manager. The remote queue is
usually given a local definition. The definition specifies the name of the remote queue manager where the
queue exists as well as the name of the remote queue itself. The information specified when defining a
remote queue object enables the queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager. The following guidelines should be
adhered to when naming remote queues:

• Remote queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Remote queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Remote queue names should be of the form:

TARGETQM.TARGETLOCALQUEUE

− The first node indicates which queue manager owns the local queue that it references.
− The second node is the name of the local queue referenced by this remote queue.

This is done to provide operations with a clear view of message flow. Since applications never
reference remote queues directly, a change in remote queue name or properties would not have any
adverse effect nor require any modifications.

Examples:
SAIGP1.SAIG.GETMAIL
SAIGP1.SAIG.ONLINE.COD.GETMAIL
SAIGP1.SAIG.COD.GETMAIL

2.1.5 Alias Queues

An alias queue object enables applications to access queues by referring to them indirectly in MQI calls.
When an alias queue name is used in an MQI call the name is resolved to the name of a message queue at
run time. This enables changes to the queues that applications use without changing the application itself
in any way. The following guidelines should be adhered to when naming alias queues:

• Alias queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

• Alias queue names should not include the name of the queue manager or an indication of the platform
used.

• Alias queue names should not indicate that the queue is an alias.

• Alias queue names should not include the words alias or queue (unless relevant in the context of the
application).

• Alias queue names can be of the form:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 13

TARGETQUEUE.[MODE]
− The first node is the name of the local or remote queue referenced by this alias queue.
− The second node is an indicator or whether this queue is to be enqueued (.PUT) or dequeued

(.GET).

Note: Alias queues were not utilized in EAI Core Release 1.0 and 2.0.

Examples:
SAIG.GETMAIL.PUT
SAIG.ONLINE.COD.GETMAIL.GET
SAIG.COD.GETMAIL.PUT

Alias queues which are to be used to enqueue will be GET(DISABLED), while alias queues which
are to be used to dequeue will be PUT(DISABLED).

2.1.6 Model and Dynamic Queues

The model queue object defines a set of queue attributes that are used as a template for a dynamic queue.
The queue manager creates dynamic queues when an application makes an open queue request specifying
a queue that is a model queue. The dynamic queue that is created in this way is a local queue whose
name is specified by the application and whose attributes are the same as the model queue.

2.1.6.1 Model Queue Naming Conventions

Generally, model queue names should be of the form:

FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

− The first node is five or six characters indicating the name of the system that owns the object.
This will be useful when applications from multiple business units share the same machine/queue
manager.

− The second node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The third node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

− The fourth node is any number of characters, such that entire queue name does not exceed 48
characters in length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

Note: Model queues were not utilized in EAI Core Release 1.0 and 2.0.

2.1.7 Transmission Queues

A transmission queue temporarily stores messages that are destined for a remote queue manager.
Transmission queues must be defined for each remote queue manager that a local queue manager will

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 14

send messages to. It is possible to associate several transmission queues with different characteristics
with a remote queue manager. This allows different classes of transmission service. The following
guidelines should be adhered to when naming transmission queues:

• Transmission queue names will include the name of the adjacent (i.e. directly connected) queue
manager. The transmission queue name will be the name of the destination queue manager only in
the case where the destination queue manager is directly connected with the sending queue manager.
Otherwise, the transmission queue name will be the name of some other queue manager that will play
the middle party in a multi-hop message transfer to the destination queue manager.

• If there is only one channel to the queue manager, use the exact name of the adjacent queue manager.

• If there will be multiple channels to the queue manager, use the adjacent queue manager name
followed by a dot and some class of service.

• If the exact queue manager name is not used, appropriate queue manager alias definitions need to be
provided to allow MQSeries to perform queue manager name resolution.

• Transmission queue names should be of the form:

AdjacentQueueManagerName[.ClassOfService]

Examples:
SAIGP1
QMT1
PEPSP2.B

The only class of service defined at this time is batch which is indicated by a ‘.B’ suffixed to the
queue name. The class of service will provide a mechanism for separating message traffic by type
and service level required. For SFA, any traffic not batch in nature will use the default transmission
queue and associated channels.

2.1.8 Dead Letter Queues

A dead-letter queue (also known as an undelivered-message queue) receives messages that cannot be
routed to their correct destinations. This occurs when, for example:
• The destination queue is full
• The message cannot be put on the destination queue
• The sender is not authorized to use the destination queue
• The destination queue does not exist

The following guidelines should be adhered to when naming dead-letter queues:

SYSTEM.DEAD.LETTER.QUEUE will always be used.

2.1.9 Initiation Queues

An initiation queue receives trigger messages, which indicate that a trigger event has occurred. A trigger
event is caused by a message that satisfies the specified conditions being put onto a queue. Messages are
read from the initiation queue by a trigger monitor application that then starts the appropriate application

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 15

to process the message. If triggers are active, at least one initiation queue must be defined for each queue
manager. The following guidelines should be adhered to when naming initiation queues:
• Initiation queue names should be of the form:

FIRSTNODE.SECONDNODE.THIRDNODE.

− The first node should contain the system name.

− Use of the second node is dependent on the system name.

− The third node should be INIT or INITQ, literal standing for the initiation queue.

Example:
CPS.BATCH.INIT
CPT1.CICSDEV2.INITQ

2.1.10 Processes

A process definition object defines an application to an MQSeries queue manager. Typically in
MQSeries, an application puts or gets messages from one or more queues and processes them. A process
definition object is used for defining applications to be started by a trigger monitor. The definition
includes the application ID, the application type, and application specific data. A process may only be
used to service a single local queue.

The following guidelines should be adhered to when naming processes:

• Process names should not include the name of the queue manager or an indication of the platform
used.

• All process names should be of the form:

LOCALQUEUE.PRC

− The first node is the local queue served by this process

− The second node is the ‘PRC’ literal indicating this MQSeries object is a process definition.

Examples:
SAIG.GETMAIL.PRC
SAIG.ONLINE.COD.GETMAIL.PRC
SAIG.COD.GETMAIL.PRC

2.1.11 Channels

A channel provides a communication path. There are two types of channels, message channels and MQI
channels. A message channel provides a communication path between two queue managers on the same,
or different, platforms. The message channel is used for the transmission of messages from one queue
manager to another, and shields the application programs from the complexities of the underlying
networking protocols. A message channel can transmit messages in only one direction. If two-way
communication is required between two queue managers, two message channels are required.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 16

An MQI channel connects an MQSeries client to a queue manager on a server machine. It is for the
transfer of MQI calls and responses only and is bi-directional. A channel definition exists for each end of
the link. The following guidelines should be adhered to when naming channels:
• Channel names can be up to 20 characters long.
• Channel names should be of the form:

SendingQM.ReceivingQM[.ClassOfService]

− SendingQM is the name of the sending queue manager (without the _QM).

− ReceivingQM is the name of the receiving queue manager (without the _QM).

− ClassOfService is optional and is used to distinguish between different classes of service
between the same two queue managers. The only class of service defined at this time is batch
which is indicated by a ‘.B’ suffixed to the channel name. The class of service will provide a
mechanism for separating message traffic by type and service level required.

Based on the above channel-naming convention, channel names can always be interpreted as
FromQueueManager.ToQueueManager without ambiguity.

Examples:
SAIGP1.QMP1
EAIBUSP1.CODP1.B

2.2 MQSeries Application Messaging Interface (AMI) Naming Guidelines

SFA has standardized on the use of Application Messaging Interface (AMI) as a programming API. The
AMI is a higher level programming interface and abstracts many of the messaging specific details into
external repositories, removing them from the programmer’s responsibility. AMI is organized into three
major catergories: Services, Policies, and Messages. That is: “Where”, “How”, and “What”.

The OAG OAMAS messaging standard has been implemented by IBM, resulting in the Application
Messaging Interface (AMI). AMI has three major components requiring naming standards to be applied.
AMI objects exposed to the applications are highly abstracted. Consequently AMI object naming will be
highly logical, exposing no implementation specific details. AMI objects are maintained in external
repositories. In the interest of maintaining the sanity of MQSeries administrators, a single AMI repository
will be used requiring objects to be qualified by the system that uses them. This will ensure the capability
to provide different options to different applications requesting the same service.

2.2.1 Service Points

Services are AMI objects that describe the “what” of the request. A service definition contains queue
name, queue manager and other details related to what queues are to be used for the request and reply.

Service point names should be of the format:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 17

Calling System.Application Details.Extension

- Calling system is the name of the system invoking AMI for this request

- Application details describe the function performed by the service

- Extension describes the action within the dialog and can be one of the following:

- REQSDR

Request Sender: This indicates that this service point is used to send requests for a given
service.

- REQRCVR

Request Receiver: This indicates that this service point is used to receive requests for a given
service

- REPRCVR

Reply Receiver: This indicates that this service point is used to receive replies to request for a
given service.

Examples of service point names are:
COD.GETMAIL.REQSDR
This is the service that would be used by COD to request mail from a SAIG mailbox.

SAIG.GETMAIL.REQRCVR
This is the service that would be used by SAIG to receive requests for mailbox data.

SAIG.COD.GETMAIL.REQRCVR
This is the service that would be used by SAIG to receive requests for mailbox data from COD.

2.2.2 Policies

Policies are objects that contain “how” the request to AMI is to be executed. Policy objects contain
clauses for connection requests, send and receive requests, as well as publish, subscribe, and policy
handler details. It should be possible to create only one policy per application named per that application.
If further granularity is required, this will be revisited and this section revised.

Examples of policy names are:

COD

This is the policy used by COD for all calls to AMI.

SAIG

This is the policy used by SAIG for all calls to AMI.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 18

2.3 Using a MQSeries Object

This section documents when to use each one of the MQSeries objects covered in section 2.1.

2.3.1 Channels

In order for two machines to communicate via MQSeries, a channel must exist. If two systems must
exchange messages, then two channels are required. Channels are created by system administrators or
dynamically by the MQSeries queue manager. Although used by the MQSeries queue manager to move
messages from one system to another, channels are of little interest to the application developer.

2.3.2 Queues

MQSeries system queues are simple FIFO disk-resident buffers that hold messages. Queues can be
divided into local queues and remote queues. Local queues reside on the local system and remote queues
reside on a remote system. If messages are destined for a remote system, then a remote queue should be
used. Messages destined for applications on the local system are sometimes referred to as destination
queues, application queues, or as local queues. Local queues are usually looked upon as queues from
which applications GET messages. Queues should be created based on application needs and used when
messages need to move between systems or between applications on the same system. Local queues were
used on each SFA legacy system.

Another type of queue is a transmission queue. Messages destined for remote queue managers are placed
in special queues called transmission queues. Messages reside in the transmission queue until they can be
delivered to the remote system via the sender channel. From the perspective of the local system,
transmission queues hold outbound messages. Again, transmission queues are created by the system
administrator and could be considered background objects. Transmission queues are used when messages
are PUT to a remote queue; the application developer does not write them to directly. At least one
transmission queue must be defined for each remote queue manager to whom the local queue manager is
to send messages directly. Transmission queues were used on each SFA legacy system.

Remote queues and alias queues are alternative logical names, which can be used to address an MQSeries
system queue instead of using the actual queue name. In the case of the remote queue definition, a single
name is provided for use by an application that relieves the application of needing to know the location
(queue manager name) of the destination queue. Remote queues are used when sending messages to a
destination queue defined on a remote queue manager. Both remote queues and alias queues are used by
the application developer to get and put messages. Remote queues were used on each SFA legacy
system.

Alias queues provide a simple one-to-one name substitution capability. An alias associates an alternative
(alias) name with an already defined queue. By defining an alias, the MQSeries system administrator has
the ability to redirect message traffic. By using alias queue definitions, the programmer is insulated from
changing their application code to fit the changing needs of the network. An alias queue is not a queue,
but an object that one can use to access another queue.

Initiation queues are queues that are used in triggering. A queue manager puts a trigger message on an
initiation queue when a trigger event occurs. A trigger event is a logical combination of conditions that is
detected by a queue manager. Initiation queues are defined by the system administrator for the use of
triggering. Initiation queues are not used for the get and put of messages by the application developer.
They are used by the queue manager. Initiation queues were defined and used on each SFA legacy
system.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 19

A dead letter queue is a queue that stores messages that cannot be routed to their correct destinations.
There should only be one dead letter queue defined on each queue manger. The dead letter queue is
defined by the system administrator at the time the queue manager is created. Applications can also use
the queue for messages they cannot deliver. Dead letter queues were created on each SFA legacy system.

A model queue defines a set of queue attributes that are used as a template for creating a dynamic queue.
Dynamic queues are created by the queue manager when an application issues a MQOPEN request
specifying a queue name that is the name of a model queue. The dynamic queue that is created in this
way is a local queue whose attributes are taken from the model queue definition. Dynamic queues do not
survive product restarts; use dynamic queues with caution. Model and dynamic queues are used based on
application needs. These were not used for SFA

Processes allow an application to be started without the need for operator intervention. An application
queue can have a process definition object associated with it that holds details of the application that will
get messages from the application queue. Processes are usually associated with a trigger event: when the
trigger event conditions are met, the application associated with the process is initiated. For SFA,
processes were used to start the adapters.

2.4 MQSeries Messaging Implementation Guidelines

The following is a list of suggestions for MQSeries design and administration:

• The MQSeries Administrator is responsible for defining and maintaining MQSeries objects such
as queues, queue managers, channels, and processes.

• The configuration values of MQSeries objects should be selected carefully to satisfy the
requirements of each application. The default value is usually the recommended value. It should
not be changed without careful evaluation.

• Include a Dead Letter Queue for every implementation.

• Avoid trigger types “DEPTH” and “EVERY”. These triggering methods have the potential to
overload the system.

• Long running units of work are detrimental to the performance of the network. Break the work
into small pieces; this tends to have the additional benefit of improved restart capability.

• Use verified network port addresses. Every queue manager needs a listener port in order to
negotiate communications and manage the various queues. The default port address is 1414.
Check with the network engineers to avoid any port address conflicts during implementation.

• Always evaluate using clusters of queues for redundancy and load balancing.
Clusters provide a means to distribute the work in a queue among multiple processes. These
processes may be on the same or different physical machines, and the machines may be located in
the same or different locations. The only restriction on the locations of the members is that the
members must be able to communicate via TCP/IP. Communications between the queue
managers participating in each cluster enable the sending queue manager to route the message to
the appropriate queue manager based on the default load balancing method or user defined cluster
workload exit routine.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 20

2.5 MQSeries Cluster Design Guidelines

2.5.1 Selecting Queue Managers to Hold Repositories
In each cluster, select at least one, preferably two, or possibly more of the queue managers to hold
repositories. A cluster could work quite adequately with only one repository but using two improves
availability. The repository queue managers are interconnected by defining cluster-sender channels
between them. A repository is a collection of information about queue managers that are members of a
cluster. This information includes queue manager names, their locations, their channels, what queues
they host, and so on. Typically, two queue managers in a cluster hold a full repository. The other queue
managers in a cluster inquire on the information in the full repositories and build up their own subsets of
this information in partial repositories.

The hardware architecture implemented at SFA can be seen in the diagram below. The cluster is
configured to include the Websphere Application Server and the two Sun Solaris Servers. The Sun
Servers were selected to be the repositories for the cluster.

• The most important consideration is that the queue managers chosen to hold repositories need to
be reliable and well managed.

• Consider the location of the queue managers and choose ones that are in a central position
geographically or perhaps ones that are located on the same system as a number of other queue
managers in the cluster.

• Another consideration might be whether a queue manager already holds the repositories for other
clusters. If a queue manager were a repository for one cluster, it would be wise to use the same
queue manager as a repository for other clusters of which it is a member.

When a queue manager sends out some information about itself, or requests some information about
another queue manager, the information or request is sent to two or more repositories. A repository
handles the request whenever possible but if the chosen repository is not available another repository is
used. When the first repository becomes available again, it collects the latest new and changed
information from the others so that the queue managers are kept in synch. The repository queue managers
send messages to each other to be sure that they are both kept up to date with new information about the
cluster. The automatic updating of repositories by queue managers is part of the behavior that is inherent
to clusters and is done behind the scenes without any intervention by the user.

The following cluster-sender and cluster-receiver definitions were taken directly from the IBM MQSeries
Queue Manager Clusters Manual:

“A cluster-sender (CLUSSDR) channel definition defines the sending end of a channel on which a cluster
queue manager can send cluster information to one of the full repositories. The cluster-sender channel is
used to notify the repository of any changes to the queue manager’s status, for example the addition or
removal of a queue. It is also used to transmit messages. The repository queue managers themselves
have cluster-sender channels that point to each other. They use them to communicate cluster status
changes to each other.“

“A cluster-receiver channel (CLUSRCVR) channel definition defines the receiving end of a channel on
which a cluster queue manager can receive messages from other queue managers in a cluster. A cluster-

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 21

receiver channel can also carry information about the cluster-information destined for the repository. The
definition of a cluster-receiver channel has the effect of advertising that a queue manger is available to
receive messages. You need at least one cluster-receiver channel for each cluster queue manager.”

If all the repository queue managers go out of service at the same time, queue managers continue to work
using the information contained in their partial repositories. New information and requests for updates
cannot be processed. When the repository queue managers reconnect to the network, messages are
exchanged to bring all repositories (both full and partial) back up to date.

2.5.2 Organizing a cluster
Having selected some queue managers to hold repositories, decide which queue managers should link to
which repository. The CLUSSDR channel definition links a queue manager to a repository from which it
finds out about the other repositories in the cluster. From then on, the queue manager sends messages to
any two ore more repositories, but it always tries to use the one to which it has a CLUSSDR channel
definition first. It is not significant which repository is chosen.

It is not advisable to use a repository queue manager on an OS/390 system as the repository queue
manager because MQSeries for OS/390 does not have a command server. To ensure that a particular
repository queue manager is not used by the MQSeries Explorer, include the string ‘%NOREPOS%’ in
the description field of its cluster-receiver channel definition. When the explorer is choosing which
repository to link to, it ignores those channel description containing ‘%NOREPOS%’, and treats them as
though the queue manager did not hold a repository for the cluster. If there are a large number of
repositories or they are spread over a large area, it would be advisable to make a second CLUSSDR
channel definition.

Choosing names
When setting up a new cluster, consider a naming convention for the queue managers. Every queue
manager must have a different name, but it may help to remember which queue managers are grouped
where if given a set of similar names. The queue naming convention of a cluster queue manager follows
the same naming convention of any other queue manager. Please refer to section 2.1.2 for queue manager
naming conventions. It is recommended that the cluster name be descriptive of the function the cluster is
performing. The cluster name is limited in length to 48 characters. For example, the name given to the
MQSeries cluster for SFA was “EAI”.

• Every cluster-receiver channel must have a unique name. One possibility is to use the queue-
manager name preceded by the preposition ‘TO’. The name would be of the form:

FIRSTNODE.SECONDNODE.

Where:

− FIRSTNODE is replace with the literal TO.
− SECONDNODE is replaced with the queue manager name.

Example:
TO.SU35E16
TO.SU35E17

Remember that all cluster-sender channels have the same name as their corresponding cluster-
receiver channel.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 22

• Do not use generic connection names on cluster-receiver definitions. If a CLUSRCVR is defined
with a generic CONNAME there is no guarantee that the CLUSSDR channels will point to the
queue managers intended. The initial CLUSSDR may end up pointing to any queue manager in
the queue-sharing group, not necessarily one that hosts a repository. Furthermore, if a channel
goes to retry status, it may reconnect to a different queue manager with the same generic name
and the flow of messages will be disrupted. Basically, the CONNAME should be the network
address of the machine the queue manager resides on.

2.5.3 Overlapping clusters
Create clusters that overlap. There are a number of reasons to do this, for example:

• To allow different organizations to have their own administration.
• To allow independent applications to be administered separately.
• To create classes of service.
• To create test and production environments.

In the figure above, the queue manager QM5 is a member of both the clusters illustrated.

If there is more than one cluster in the network, it is essential to give them different names. If two clusters
with the same name are ever merged, it will not be possible to separate them again.
When defining a cluster, the following objects are included in the set of default objects defined when
creating a queue manager on V5.X of Sun Solaris and Windows NT, and in the customization samples for
MQSeries for OS/390.

Do not alter the default queue definitions. This could alter the default channel definitions in the same way
as any other channel definition, using MQSC or PCF commands.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 23

2.5.4 In the Unlikely Event of a Repository Failure
Cluster information is carried to repositories (whether full or partial) on a local queue called
SYSTEM.CLUSTER.COMMAND.QUEUE. If this queue should fill up, perhaps because the queue
manager has stopped working, the cluster-information messages are routed to the dead-letter queue. If this
is observed from the messages on the queue-manager log or OS/390 system console, an application will
need to be executed to retrieve the messages from the dead-letter queue and reroute them to the correct
destination.

If errors occur on a repository queue manager, messages will appear defining what error has occurred and
how long the queue manager will wait before trying to restart. On MQSeries for OS/390 the
SYSTEM.CLUSTER.COMMAND.QUEUE is get-disabled. After identifying and resolving the error,
get-enable the SYSTEM.CLUSTER.COMMAND.QUEUE so that the queue manager will be able to
restart successfully.

In the unlikely event of a queue manager’s repository running out of storage, storage allocation errors will
appear on the queue-manager log or OS/390 system console. If this happens, stop and then restart the
queue manager. When the queue manager is restarted, more storage is automatically allocated to hold all
the repository information.

2.5.5 Cluster channels
Although using clusters relieves the need to define channels (because MQSeries defines them by default),
the same channel technology used in distributed queuing is used for communication between queue
managers in a cluster. To understand about cluster channels, become familiar with matters such as:

• How channels operate
• How to find their status
• How to use channel exits

These topics are all discussed in the MQSeries Intercommunication book.

When defining cluster-sender channels and cluster-receiver channels, do not set the “disconnect interval”
too low (less than about 10 seconds). If it is set too low, the channel may close down between sending a
request to a repository queue manager and receiving the response.

If the cluster-sender end of a channel fails and subsequently tries to restart, the restart is rejected if the
cluster-receiver end of the channel has remained active. To avoid this problem, arrange for the cluster-
receiver channel to be terminated and restarted, when a cluster-sender channel attempts to restart.

On V5.X of MQSeries for Sun Solaris and Windows NT
Control this using the AdoptNewMCA, AdoptNewMCATimeout, and AdoptNewMCACheck attributes in
the qm.ini file or the Windows NT Registry. See the MQSeries System Administration book for more
information.

On MQSeries for OS/390
Control this using the ADOPTMCA and ADOPTCHK parameters of CSQ6CHIP. See the MQSeries for
OS/390 System Setup Guide for more information.

All documentation referenced above can be found in appendix A

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 24

2.6 MQSeries Cluster Implementation Guidelines

• On OS/390 clustering cannot be used if the system is using CICS for distributed queuing. In
order to get the most benefit out of using clusters, the queue managers in the network need to be
on a platform that supports clusters. Until all the systems are migrated to a platform that supports
clusters, the system may have queue managers outside a cluster that are not able to access the
cluster queues without extra manual definitions. The clustering facility is available to queue
managers on the following platforms:

MQSeries for AIX V5.1
MQSeries for AS/400 V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

• If two clusters with the same name were merged, it would not be possible to separate them again.
Therefore, it is advisable to give all clusters a unique name.

• If a message arrives at a queue manager but there is no queue there to receive it, the message is
put to the dead-letter queue as usual. (If there is no dead-letter queue, the channel fails and retries,
as described in “Dead-letter queue Guidelines” in the MQSeries Intercommunication book.)

• Using clusters reduces system administration. Clusters make it easy to connect larger networks
with many more queue managers than would be possible to contemplate using distributed
queuing. However, as with distributed queuing, there is a risk that the system may consume
excessive network resources if attempting to enable communication between every queue
manager in a cluster.

• The purpose of distribution lists, which are supported on V5.1 of MQSeries for Sun Solaris and
Windows NT, is to use a single MQPUT command to send the same message to multiple
destinations. Distribution lists can be used in conjunction with queue manager clusters. However,
in a clustering environment all the messages are expanded at MQPUT time and so the advantage,
in terms of network traffic, is not so great as in a non-clustering environment. The advantage of
distribution lists, from the administrator’s point of view, is that the numerous channels and
transmission queues do not need to be defined manually.

• If using clusters to achieve workload balancing, first examine the applications to see whether the
applications require messages to be processed by a particular queue manager or in a particular
sequence. Such applications are said to have message affinities. Applications may need to be
modified before being used in complex clusters.

• It is not advisable to use clustering in an environment where IP addresses change on an
unpredictable basis such as on machines where Dynamic Host Configuration Protocol (DHCP) is
being used.

2.7 SFA Cluster Specifics

2.7.1 Physical layout of the cluster
The hardware architecture implemented at SFA is shown in the diagram below.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 25

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 26

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Development/Test)

EAI BUS Server Cluster

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG

MQSeries Server

QMgrA
Websphere Application Server

 Oracle

Web Server

Adapter

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

Applications

Config-
uration

Mgr

MQSI Development NT Server

D
ep

lo
ym

en
t

NT Client/MQSI Control Center

NT Client/ MQSI Control Center

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 27

2.7.1.1 Cluster configuration – Development/Test
The SFA EAI cluster, given the name “EAI”, includes 3 machines: the WebSphere Application Server,
logically referred to as SU35E5 and the two Sun Solaris Servers, logically referred to as SU35E16 and
SU35E17. The Sun Servers are the repository queue managers for the cluster.

The steps used in creating the cluster are:

1. Install MQSeries on the system.

2. Create the queue managers and the default objects with the crtmqm command.

3. Start the channel initiator and the channel listener. The channel initiator monitors the system-
defined initiation queue SYSTEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when
it is needed.

4. Decide upon the cluster name, in the case of SFA the name of EAI was chosen for the cluster.

5. Determine which queue managers should hold full repositories. For SFA, both nodes SU35E16

and SU35E17 were chosen to hold full repositories.

6. Alter the queue manager definitions to add repository definitions. The command ALTER QMGR
REPOS(EAI) was executed on both SU35E16(Development) and SU35E17(Test).

7. Define the CLUSRCVR channels. For each queue manager in a cluster you need to define a

cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E5, SU35E16(Development), and SU35E17(Test) with the command:

For example:
On SU35E5: DEFINE CHANNEL(TO.SU35E5) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E5) CLUSTER(EAI)
On SU35E16 Development: DEFINE CHANNEL(TO.SU35E16(Development))
CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME(ip address of SU35E16(Development))
CLUSTER(EAI)
On SU35E17 Test: DEFINE CHANNEL(TO.SU35E17(Test)) CHLTYPE(CLUSRCVR)
TRPTYPE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER(EAI)

8. Define the CLUSSDR channels. On every queue manager in a cluster, you need to define one

cluster-sender channel on which the queue manager can send messages to one of the repository
queue managers.

On SU35E5: DEFINE CHANNEL(TO.SU35E16(Development)) CHLTYPE(CLUSSDR)
TRPTYPE(TCP) CONNAME(ip address of SU35E16) CLUSTER (EAI)
On SU35E16 Development: DEFINE CHANNEL(TO.SU35E17(Test)) CHLTYPE(CLUSSDR)
TRPTYPE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER (EAI)
On SU35E17 Test: DEFINE CHANNEL(TO.SU35E16(Development)) CHLTYPE(CLUSSDR)
TRPTYPE(TCP)
CONNAME(ip address of SU35E16(Development)) CLUSTER(EAI)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 28

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender
channel in the same cluster, the cluster-sender channel is started.

9. Define any cluster queues. For example:

On SU35E16 Development: DEFINE QLOCAL(EAI.FROM.WAS.LOAN) CLUSTER(EAI)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 29

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Production)

EAI BUS Servers Clusters

MQSeries Server

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG
QMgrB

MQSeries Server

QMgrA

Websphere Application Server

Websphere Application Server

 Oracle

Web Server

Web Server

Adapter

Adapter

MQSI
Broker 2

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrW

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

DB2

D
ep

lo
ym

en
t

MQSI Production Migration NT Server

Config-
uration

Mgr

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

Applications

2.7.1.2 Cluster configuration – Production
The SFA EAI cluster, given the name “EAIPROD”, includes 4 machines: two WebSphere Application
Servers, logically referred to as SU35E9 and SU35E13, and the two Sun Solaris Servers, logically
referred to as SU35E3 and SU35E14. The Sun Servers, SU35E3 and SU35E14 are the repository queue
managers for the cluster.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 30

The steps used in creating the cluster are:

1. Install MQSeries on the system.

2. Create the queue managers and the default objects with the crtmqm command.

3. Start the channel initiator and the channel listener. The channel initiator monitors the system-
defined initiation queue SYSTEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when
it is needed.

4. Decide upon the cluster name, in the case of SFA the name of EAIPROD was chosen for the

cluster.

5. Determine which queue managers should hold full repositories. For SFA, both nodes SU35E3
and SU35E14 were chosen to hold full repositories.

6. Alter the queue manager definitions to add repository definitions. The command ALTER QMGR

REPOS(EAIPROD) was executed on both SU35E3 and SU35E14.

7. Define the CLUSRCVR channels. For each queue manager in a cluster you need to define a
cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E3, SU35E9, SU35E13, and SU35E14 with the command:

For example:
On SU35E3: DEFINE CHANNEL(TO.SU35E3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E3) CLUSTER(EAIPROD)
On SU35E9: DEFINE CHANNEL(TO.SU35E9) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E9) CLUSTER(EAIPROD)
On SU35E13: DEFINE CHANNEL(TO.SU35E13) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E13) CLUSTER(EAIPROD)
On SU35E14: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER(EAIPROD)

8. Define the CLUSSDR channels. On every queue manager in a cluster, you need to define one

cluster-sender channel on which the queue manager can send messages to one of the repository
queue managers.

On SU35E3: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)
On SU35E9: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)
On SU35E13: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)
On SU35E14: DEFINE CHANNEL(TO.SU35E3) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(ip address of SU35E3) CLUSTER (EAIPROD)

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender
channel in the same cluster, the cluster-sender channel is started.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 31

9. Define any cluster queues. For example:

On SU35E3: DEFINE QLOCAL(EAI.FROM.WAS.LOAN) CLUSTER(EAIPROD)

2.8 MQSeries Websphere Design Guidelines

The Web Application Server communicates with the EAI bus to retrieve and put information to different
legacy data sources. WebSphere Application Server is the standard Java Application Server in the
Integrated Technical Architecture (ITA) at SFA. The WebSphere Server will host Web Based
applications that act as middleware between the client browser and SFA’s Legacy Systems via the EAI
bus. Using Java Server Pages, Servlets and Enterprise Java Beans, WebSphere implements SFA’s
business application logic through Java based Applications. Several methods exist to enable
communication between a WebSphere hosted application and the EAI bus.

2.8.1 WebSphere Connectors

2.8.1.1 Common Connector Framework

The Common Connector Framework is a standard for developing applications using E-Business Patterns.
When a Web Application Server needs to access a Backend Enterprise Information System, whether it is
a middleware messaging system, Enterprise Database system, or a System 390 Transaction Management
System, several common communication procedures must take place. These procedures may include
starting a transaction, processing data, passing status, and closing the transaction. Whether the backend
system is CICS, IMS, DB2 or an Oracle RDBMS, the actual commands and parameters may be different
but the high level procedures are common. Since these procedures and backend systems have already
been identified, prebuilt java classes can be written to communicate with these systems. This requires a
change to the parameters and data that is passed to the backend systems.

The Common Connector Framework (CCF) is actually implemented within IBM’s java development tool,
Visual Age for Java (VAJ). The needed classes that implement the binding between the Web Application
Server and MQSeries are included within VAJ’s Enterprise Access Builder, which is part of VAJ
Enterprise Edition. Programs written using the MQSeries CCF connector classes can communicate with
MQSeries Applications using the standard MQSeries Programming Interface or the MQSeries Client
classes for java interface. A programmer can use the SmartGuide Wizard within VAJ to build a program
shell that will communicate with MQSeries and all that is required is to add the application business logic
that will make decisions.

2.8.1.2 Build Your Own Connector

Using MQSeries client classes for Java, a programmer can develop their own interface to MQSeries. This
option should only be used by very experienced programmers that have previously implemented Java
interfaces to messaging systems. This option is not recommended because the CCF framework is so
readily available.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 32

2.8.2 Architecture look and feel

Whether using the CCF framework or building a custom connector, it is important to have a standard,
reusable application component within the Java Application Server that enforces communication and data
transfer standards between the Application Server and EAI Bus. This reusable component can exist as a
Servlet or an Enterprise Java Bean on the WebSphere Application Server. When other applications
require access to the EAI Bus, the applications would make a call to the servlet/EJB, which then forwards
the message to the EAI bus. This reusable servlet/EJB enforces naming standards, queue names and
cluster names before sending message data to the EAI bus. This servlet/EJB would also control the
number of connections to MQSeries and allow a central place to tune and manage the web application
interface to MQSeries.

To provide reliability and availability of the EAI Bus, the MQSeries Server component should be
installed on all WebSphere Application Server (WAS). If an active MQSeries Server with defined Queue
Managers are installed on the WAS Server, this ensures assured delivery of all messages to the target
destination. If the Queue Manager on the target destination server goes down the sending MQSeries
Server will retain the message data and send once connectivity to the target Queue Manager is restored.

EAI BUS

Java Application
Running within

WebSphere

EAI Servlet/EJB
running with
WebSphere

Providing access to
EAI Bus

MQSeries Server
Residing on
WAS Server

Java Application needs access to the
EAI Bus and makes a call to the EAI
Message Servlet, passing the message

To Ensure Reliabilty MQSeries
Server is installed on WAS Box

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 33

2.8.3 SFA EAI WebSphere Reusable Component

The Release 1.0 and 2.0 EAI Core Architecture team has developed a reusable WebSphere Java
component as an aid to SFA application developers in connecting Internet applications to the EAI Bus.
This reusable component is written in Java. It provides a class file for putting and getting messages into
and out of a MQSeries message queue. The application incorporates this Java class within the application
code to provide a transparent mechanism for putting messages into a queue to be sent to the EAI Bus for
processing, and to retrieve message data from a queue upon return. The application specific logic must be
built into the application to pass the required message data and to process the message data upon receipt.

2.8.3.1 WebSphere MQ Adapter Overview

The WebSphere MQ Adapter is a Java component that provides a Class file to put message data into a
MQSeries message queue and to get message data from a MQSeries message queue. The adapter utilizes
MQSeries MQI calls to perform this functionality. In addition, the MQ Adapter provides XML
translation capability to transform the input message data from the WebSphere server application into the
application specific XML format required to validate the EAI Core architecture for Release 1.0 and 2.0.
The input data can be of any format, as long as the XML mapping is defined in the application specific
MQ Adapter. Then the message data can be passed to the EAI Bus for transformation by MQSI. This
functionality was provided for the PEPS and bTrade validation test.

The developed EAI MQ Adapter resides in the ClearCase repository. Any SFA application development
team can utilize this functionality for putting messages into a MQSeries message queue, transforming into
XML format, and getting the returned message data from the legacy system for processing by the
application.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 34

3 SFA APPLICATION ENABLEMENT GUIDELINES

3.1 Application Programs and Messaging

The IBM MQSeries range of products provides application-programming services that enable application
programs to communicate with each other using messages and queues. This form of communication is
referred to as commercial messaging. It provides assured, once-only delivery of messages. Using
MQSeries means that you can separate application programs, so that the program sending a message can
continue processing without having to wait for a reply from the receiver. If the receiver, or the
communication channel to it, is temporarily unavailable, the message can be forwarded later. MQSeries
also provides mechanisms for providing acknowledgements of messages received.

The programs that comprise a MQSeries application can be running on different computers, on different
operating systems, and at different locations. The applications are written using a common programming
interface known as the Message Queue Interface (MQI), so that applications developed on one platform
can be transferred to another.

This figure shows that when two applications communicate using messages and queues, one application
puts a message on a queue, and the other application gets that message from the queue.

3.2 Application Usage Guidelines For MQSeries

A queue is a MQSeries object owned by a queue manager, upon which applications can put or retrieve
messages. Applications access a queue by using the Message Queue Interface (MQI). Before a message
can be put on a queue, the queue must already exist. Each queue must have a name that is unique to the
owning queue manager. Before an application can use a queue, it must open the queue, specifying what it
wants to do with it. For example, the application can open a queue to:

• Browse messages only (do not delete them)
• Retrieve messages

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 35

• Put messages on the queue
• Inquire about the attributes of the queue
• Set the attributes of the queue

For a complete list of the options related to opening a queue, see the description of the MQOPEN call in
the MQSeries Application Programming Reference manual.

There are different types of queues. These types include:

• Local: a local queue is managed by the queue manager to which the application is connected
• Remote: a remote queue is managed by a queue manager other than the one to which the

application is connected
• Alias: an alias queue points to another queue
• Model: a model queue is a template for queue definition
• Dynamic: a dynamic queue is a temporary queue defined based on a model queue

In SFA’s technical environment, the use of alias queues is discouraged, unless a business need dictates its
use (e.g. limiting security access to certain queues). Applications putting messages to remote queues will
use the remote queue definition. This allows the application to only specify the remote queue name and
not be required to know the remote queue manager name. Model and dynamic queues should be used
only when a business need dictates their use.

3.2.1 Identifying an Application for a Queue Manager

Any MQSeries application must make a successful connection to a queue manager before it can make any
other MQI calls. When the application successfully makes the connection, the queue manager returns a
connection handle. This is an identifier that the application must specify each time it issues a MQI call.
An application can connect to only one queue manager at a time* (known as its local queue manager), so
only one connection handle is valid (for that particular application) at a time. When the application has
connected to a queue manager, that queue manager processes all the MQI calls that the application issues
until the application issues another MQI call to disconnect from that queue manager. Each adapter
written for SFA performs the task of connecting to the queue manager.

* When an application connects to a queue manager, it issues a MQCONN call. The scope of a
MQCONN call is limited to the thread that issued it within all of the following:

− MQSeries for AS/400

− MQSeries for Compaq (Digital) OpenVMS

− MQSeries for OS/2 Warp

− MQSeries on UNIX systems

− MQSeries for Windows

− MQSeries for Windows NT

That is, the connection handle returned from a MQCONN call is valid only within the thread that issued
the call. Only one call may be made at any one time using the handle. If it is used from a different
thread, it will be rejected as invalid. If the application has multiple threads and each wishes to use
MQSeries calls, each one must individually issue MQCONN. Each thread can connect to a different
queue manager on OS/2 and Windows NT, but not on OS/400 or UNIX. If the application is running as a
client, it may connect to more than one queue manager within a thread. This does not apply if the
application is not running as a client.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 36

3.2.2 Opening and Closing Queues

Before opening a queue using the MQOPEN call, the application must connect to a queue manager. The
application can then use the MQOPEN call to open a queue. The application can also then use the
MQCLOSE call to close a queue. When an application opens a queue, the application receives an object
handle for that queue. This handle is used in subsequent calls to get or put messages. The same queue
can be opened more than once; each open call creates a new object handle. However, most applications
will only need to open a given queue once.

Once an application has opened a queue, the application has access to that queue until it closes the queue.
The MQOPEN call is costly in terms of time, so once an application has opened a queue and plans to use
it in the future, keep the queue open, except when an application only needs to ‘put’ one message. The
MQPUT1 call was designed for this case: this call opens a queue, puts the message, and closes the queue,
eliminating the need to use the MQOPEN and MQCLOSE calls.

Queues are automatically closed when an application closes its connection to the queue manager.
However, it is a good practice to close all queues before disconnecting from the queue manager.

Each adapter written for SFA performed MQOPEN and MQCLOSE calls.

It is recommended to use the FAIL_IF_QUIESCING open option for the MQOPEN call. This will allow
the MQSeries administrators more control of the system.

3.2.2.1 MQOPEN Call

As input to the MQOPEN call, the application must supply:

• A connection handle, using the connection handle returned by the MQCONN call.
• A description of the object to open, using the object descriptor structure (MQOD).
• One or more options that control the action of the call.

The output from MQOPEN is:

• An object-handle that represents access to the queue. Use this as input to any subsequent MQI
calls for this queue.

• A modified object-descriptor structure, if the application is creating a dynamic queue.
• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
as to why the call failed.

3.2.2.2 MQCLOSE Call

As input to the MQCLOSE call, the application must supply:

• A connection handle, using the same connection handle used to open the queue.
• The handle of the queue to close. This comes from the output of the MQOPEN call.

The output from MQCLOSE is:

• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
as to why the call failed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 37

3.2.3 Putting Messages On A Queue

To put messages on a queue, an application must use the MQOO_OUTPUT option when issuing the
MQOPEN call. After the queue has been opened using this option, the application can issue a MQPUT
call to put a message on the open queue. If the application is only putting one message and will not use
the queue again, use the MQPUT1 call.

It is recommended to use the FAIL_IF_QUIESCING put-message option for the MQPUT and MQPUT1
calls. This will allow the MQSeries administrators more control of the system.MQPUT call.

As input to the MQPUT call, the application must supply:

• A connection handle, using the connection handle that was returned when the application issued
the MQCONN call.

• A queue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

• A description of the message the application is putting on the queue. This is in the form of a
message descriptor structure.

• Control information, in the form of a put-message options structure. This options structure needs
to be redefined for every MQPUT call.

• The length of the application data contained within the message.
• The application data itself.

The output from the MQPUT call is:

• A reason code.
• A completion code.
• If the call completes successfully, it also returns the put-message options structure and the

message descriptor structure. One or both structures may have modified attributes within them.
For more detail, look at the MQSeries Application Programming Guide.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
as to why the call failed.

3.2.4 Getting Messages From A Queue

To open a queue so that the messages on that particular queue can be browsed (does not remove the
message from the queue), use the MQOPEN call with the MQOO_BROWSE option. To get (and
remove) messages from a queue, an application must use the MQOO_INPUT_AS_Q_DEF,
MQOO_INPUT_SHARED, or MQOO_INPUT_EXCLUSIVE option when issuing the MQOPEN call.
Selection of one of these three options is used to specify if the application opens the queue in exclusive,
or shared, mode. See the MQSeries Application Programming Guide for more information. After the
queue has been opened using one of these options, the application can issue a MQGET call to get a
message from the open queue.

By specifying the MsgId and/or CorrelId fields in the message descriptor structure, the application can
search the queue for a particular message. If the application uses MQGET call more than once (for
example, to step through the messages in the queue), it must set the MsgId and CorrelId fields of this
structure to null after each call. This prevents the call from filling these fields with the identifiers of the
message that were retrieved, and therefore getting messages with the same identifiers as the previous
message.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 38

If the fields in the message descriptor structure are not specified to search for a particular message, the
MQGET call will retrieve the first message in the queue.

It is recommended to use the FAIL_IF_QUIESCING get-message option for the MQGET call. This will
allow the MQSeries administrators more control of the system.

3.2.4.1 MQGET Call

As input to the MQGET call, the application must supply:

• A connection handle, using the connection handle that was returned when the application issued
the MQCONN call.

• A queue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

• A description of the message the application wants to get from the queue. This is in the form of a
message descriptor structure.

• Control information in the form of a get-message options structure. This control information
describes if the application is browsing or removing messages. The control information also
describes if the MQI call waits (and how long it waits) for a message or if the call returns
immediately.

• The size of the buffer you have assigned to hold the message.
• The address of the storage location in which the message must be put.

The output from the MQGET call is:

• A reason code
• A completion code
• The message in the buffer area specified, if the call completed successfully
• The options structure, modified to show the name of the queue from which the message was

retrieved.
• The message descriptor structure, with the contents of the fields modified to describe the message

that was retrieved
• The length of the message
• Always verify the completion code. If the call is unsuccessful, inspect the reason code for an

indication as to why the call failed

3.2.5 Queue Manager Connectivity Guidelines

A queue manager supplies applications with MQSeries services. An application must have a connection
to a queue manager before it can use the services of that queue manager. An application can make this
connection explicitly (using the MQCONN call), or the connection can be made implicitly. For example,
CICS for MVS/ESA and CICS/MVS programs do not need to explicitly connect to a queue manager,
because the CICS system itself is connected to a queue manager. However, for portability it is
recommended that CICS for MVS/ESA and CICS/MVS programs use the MQCONN and MQDISC calls.

3.2.6 Connecting To and Disconnecting From a Queue Manager

To connect to a queue manager, an application must use the MQCONN call. To disconnect from a queue
manager, an application must use the MQDISC call.

MQCONN Call

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 39

As input to the MQCONN call, the application must supply a queue manager name. To connect to the
default queue manager, specify a queue manager name consisting entirely of blanks or starting with a null
character.

The output from MQCONN is:

• A connection handle, using this handle in subsequent MQI calls associated with this queue
manager.

• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
as to why the call failed. If the reason code indicates that the application is already connected to that
queue manager, the connection handle that is returned is the same as the one that was returned when the
application first connected. So the application probably should not issue the MQDISC call in this
situation because the calling application will expect to remain connected. The MQCONN call fails if the
queue manager is in a queuing state when issuing the call, or if the queue manager is shutting down.

MQDISC Call

As input to the MQDISC call, the application must supply the connection handle that was returned by
MQCONN when the application connected to the queue manager.

The output from MQDISC is:

• A completion code.
• A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
as to why the call failed.

All adapters written for SFA had to connect to the queue manager, open a queue, perform a MQGET or
MQPUT, close a queue, and disconnect from the queue manager. Each future adapter written for SFA
will also need to perform each of the above in order to get and put messages on a queue.

3.2.7 Pass the Connection Name as a Program Parameter

This allows a program to run unchanged on any Queue Manager. This provides the capability for
multiple concurrent instances; or a queue driven application could be moved to a different queue manager
without impacting the application code.

3.2.8 Messaging Using More Than One Queue Manager

This arrangement is not typical for a real messaging application because both programs are running on the
same computer, and connected to the same queue manager. In a commercial application, the putting and
getting programs would probably be on different computers, and so connected to different queue
managers.

This figure shows how messaging works when the program putting the message and the program getting
the message are on the different computers, and are connected to different queue managers.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 40

In this situation, it is necessary to create message channels to carry MQSeries messages between the
queue managers.

3.3 Application Usage Guidelines for MQSeries Application Messaging Interface (AMI)

AMI is a highly abstracted interface to MQSeries that externalizes much of the complexity associated
with MQSeries usage into an external repository. Understanding its organization is key to its use. AMI is
organized into three major levels: Service Points, Policies, and Messages. Service Points contain
information related to queues. Policies contain information related to connections, queue interaction,
publish and subscribe and AMI user exits. Messages are not abstracted into the AMI repository and are
the containers that hold the application data to be placed to or received from queues.

The AMI is object oriented. All errors are reported in the form of thrown exceptions that are caught and
evaluated by the application.

The AMI repository is created, updated, and managed by MQSeries administrators who in each case will
ensure that objects match application requirements and options are appropriate. The use of an external
repository dramatically reduces the amount of middleware knowledge application programmers are
required to possess. Comparing the MQI and AMI guidelines demonstrate this conclusively.

3.3.1 AMI Connectivity Guidelines

Any AMI application must establish a Session before it can make any other AMI calls. An AMI Session
is a container object that holds the queue manager connection information.

3.3.2 Establishing and Terminating AMI Sessions

In order to establish an AMI session it is necessary to create an AMI Session object. This object will be
used to establish connections to the underlying queue manager as well as provide the context for other
AMI objects. These Session objects are created with a logical name that must be unique within the
application.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 41

Connecting to a Queue Manager

Connecting to a queue manager is a result of running the “open” method of the previously created Session
object. An AMI Policy is provided as input. The “Initialization” section of the referenced Policy is used
to determine queue manager name, whether to use client or server binding and whether to run as a
trusted/fastpath application. When successfully opened, the Session contains an active connection to a
queue manager.

Disconnecting from a Queue Manager

Disconnecting from a queue manager is a result of running the “close” method of the previously created
Session object. An AMI policy is provided as input. Information from the policy is used in the case
where users exits are required. All related objects become invalid after having closed the AMI Session
through which they were created.

3.3.3 AMI Sender and AMI Receiver Objects

In order to put messages to and get messages from queues it in necessary to create AMI Sender and AMI
Receiver objects. These objects contain queue information and are used to direct interaction with those
queues.

3.3.3.1 Using AMI Sender objects

When creating a Sender object a Service Point name is provided as input. This is a reference to a Service
Point in the AMI repository. The Service Point contains the queue name that is to be used to put
messages.

Once created, the “open” method is used to establish a handle to the target MQSeries queue. A Policy is
provided as input. The “Send” section of the policy is used to determine the options related to the
placement of messages including priority, persistence, expiry interval, report options and more.

To then send data using this Sender, the “send” method is used providing a Policy and message data as
input.

When complete, using the “close” method of the Sender invalidates its handle to the underlying
MQSeries queue and closes it.

3.3.3.2 Using AMI Receiver objects

When creating a Receiver object a Service Point name is provided as input. This is a reference to a
Service Point in the AMI repository. The Service Point contains the queue name that is to be used to get
messages.

Once created, the “open” method is used to establish a handle to the target MQSeries queue. A Policy is
provided as input. The “Receive” section of the policy is used to determine the options related to the
receipt of messages including wait interval, message conversion and more.

To then receive data using this Receiver, the “receive” method is used providing a Policy and message
buffer as input.

When complete, using the “close” method of the Receiver invalidates its handle to the underlying
MQSeries queue and closes it.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 42

3.4 Application Interface Programming Options for Message Queue Interface (MQI)

There is a wide range of options for communicating with MQSeries programs including new interfaces
for message content as well message delivery. Programs written using any of these message delivery
styles can communicate with each other and with programs written in any of the other MQSeries delivery
styles.

3.4.1 Message Delivery

3.4.1.1 Message Queue Interface (MQI)

The Message Queue Interface (MQI) is the common API across all platforms. The calls made by the
applications running on each platform are common. This allows application programmers to focus on the
business logic of the application, rather than the interface differences of each platform. This makes it
much easier to write and maintain applications, as well as facilitate migration of applications from one
platform to another as required by changing business needs. Each adapter written for SFA made use of a
majority of the MQI function calls as shown below. The following figure represents the MQI.

Application Program

MQI

Queue Manager

M
Q

C
O

N
N

M
Q

D
IS

C

M
Q

O
PE

N

M
Q

C
LO

SE

M
Q

PU
T

M
Q

SE
T

M
Q

IN
Q

M
Q

PU
T1

M
Q

G
ET

M
Q

C
M

IT

M
Q

B
A

C
K

Process
Definition

Object

Queue
Manager
Object

Queue
Object

Figure 1 – Message Queue Interface

3.4.1.2 Java Message Service (JMS)

Java Message Service (JMS) is supported by a MQSeries implementation of this Java standard API for
Enterprise Messaging Services. Using JMS, applications can communicate with other MQSeries JMS
applications, with applications written to the MQI, or to the Application Message Interface (AMI).

3.4.1.3 Application Messaging Interface (AMI)

The Application Messaging Interface (AMI) provides a simpler and higher-level programming interface
than the MQI. Although it has some limitations compared with the MQI, its function should be sufficient
for the majority of users. The AMI supports both point-to-point and publish/subscribe messaging models.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 43

The AMI eliminates the need for application programmers to understand all of the options and functions
available in the MQI. This was not used at SFA, but is mentioned for future use if the need arises.

The MQSeries AMI can be used to build client applications, and the AMI will automatically build any
required headers as specified using the AMI, including the new RFH2 headers. The AMI is designed to
simplify the task of the application programmer, while enabling the more advanced functions and
message broker facilities to be used.

AMI is a high level API that moves many functions normally performed by messaging applications into
the middleware layer, where a set of policies defined by the enterprise is applied on the application's
behalf. Policies hold details of how messages are to be handled, for example, priority, confirmation of
delivery, timed expiry.

3.4.2 Message Content

3.4.2.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is an industry-wide standard for self-defining messages. It enables
diverse systems and databases to understand each other's data (for example, to identify fields) by
indicating both the content and the role of the data.

XML is supported in MQSeries Integrator Version 2 and MQSeries Workflow Version 3.2; XML will be
supported within MQSeries Messaging via the Common Messaging Interface.

For SFA, all messages passed into MQSeries Integrator were in XML. IBM is not advocating the use of
XML and the adoption of XML as a standard is outside the scope of this document.

Sample XML Message:

<?xml version ="1.0"?>
<!DOCTYPE Message SYSTEM "C:\TestEnvironment\XMLFiles\LifeQuote.dtd">
<!--Generated by XML Authority.-->
<Message issuedTime = "string" Authorisation = "string" sessionID = "string" creationTime = "string"
issueProgram =
"string" issueUser = "string" ID = "id1" issueSystem = "string" txnScope = "string" eventID = "string"
zoneOffset = "string"
language = "string"><!-- (Command.valueQuoteRequest* , Command.valueQuoteResponse*)-->
<Command.valueQuoteRequest responseDTD = "string" echoBack = "string" cmdMode = "always" ID =
"id2"><!--
(%CustomizeAgreement , SystemInfo)-->
<LifeAgreement ID = "id3" REFID = "string" status = "string" UUID = "UUID"><!-- (%Agreement ,
Product
)-->
<policyNumber>only text</policyNumber>
<effectiveFromDate>only text</effectiveFromDate>
<companyCode>only text</companyCode>
<ratingCompany>only text</ratingCompany>
<policyType>only text</policyType>
<renewalDate>only text</renewalDate>
<paymentPlan>only text</paymentPlan>
<agreementState>only text</agreementState>
<lineOfBusinessCode>only text</lineOfBusinessCode>
<effectiveFromDate>only text</effectiveFromDate>

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 44

<agentOfRecord>only text</agentOfRecord>
<agentCommission>only text</agentCommission>
<PolicyMessage/>
<MoneyObligation ID="id4" REFID="string" status="string" UUID="UUID"><!--(type, amount,
frequency)-->
<type>only text</type>
<amount>only text</amount>
<frequency>only text</frequency>
</MoneyObligation>
<Discount-Surcharge/>
<Underwriting/>
<Applicant ID = "id5" REFID = "string" status = "string" UUID = "UUID"><!-- (Person)-->
<Person ID = "id6" REFID = "string" status = "string" UUID = "UUID"><!-- (%Party , Body
, PartyActivity* , Residency , PartyContactPointUsage?)-->
<id>only text</id>
<uuid>only text</uuid>
<FamilyName/>
<!-- <UnstructuredName>only text</UnstructuredName> -->
<Body ID = "id7" REFID = "string" status = "string" UUID = "UUID"><!-- (gender ,
height , weight , birthdate , MedicalCondition+)-->
<gender>Female</gender>
<height>6.2</height>
<weight>250</weight>
<birthdate>01/01/1980</birthdate>
<MedicalCondition ID = "id8" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>High Blood Pressure</description>
<response>Yes</response>
</MedicalCondition>
<MedicalCondition ID = "id9" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>Heart Disease</description>
<response>No</response>
</MedicalCondition>

</Body>

3.5 EAI Common Error Handling Guidelines

Whenever possible, the queue manager returns any errors as soon as a MQI call is made. The three most
common errors that the queue manager can report immediately are described in this section.

3.5.1 Failure of a MQI Call

An example of a MQI call failure is being unable to put a message to a queue because the queue is full.
The completion code and return code of the MQI call specify the nature of the failure. Applications
should inspect these codes for every MQI call and be able to handle all possible return codes.

3.5.2 System Interruption

The queue manager is an example of a system component needed by the application and when the queue
manager is interrupted, the application encounters an error. Applications must ensure no data is lost due
to this sort of interruption. To ensure no data loss, applications will get and put messages under

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 45

syncpoint. This syncpoint activity can be controlled by the queue manager or by some external resource
coordinator (e.g. CICS, Encina, etc.).

3.5.3 Unable to Process Messages

Messages containing data that cannot be processed successfully are known as poisoned messages. When
applications operate under syncpoint, if the application cannot successfully process a message, the
MQGET call is backed out. The queue manager maintains a count (in the BackoutCount field of the
message descriptor) of the number of times this happens for MQGET calls which DO NOT use any of the
Browse type get message options. Messages whose backout counts increase over time are being
repeatedly rejected by the application – the application should be designed to handle such situations.
There are many different tactics to handling poisoned messages. One method would be to write the
messages to a file and a common “poison message application” attempt to process them at a later point in
time. Another method is to have the application itself deal with the message. Messages could also be
written to the dead letter queue and then be processed by a dead letter handler. Based on your application
requirements a method should be adopted.

3.5.4 Responding to Errors

Applications should respond in a similar manner to errors returned by MQI calls. One possible way to
implement this common error handling methodology is to provide error-handling routines for the
application developer. Use of these common error-handling routines ensures that all application
programmers handle MQSeries errors in the same way and do not have to write their own error handling
routines.

Note: Refer to Section 6.1 - Reusable EAI Functions: EAI Common Log Component for additional
information regarding common error handling. The EAI Common Log Component interface enables
applications to record events to local and centralized logs.

3.6 Triggered queues and applications

3.6.1 Designing MQSeries Applications
Some MQSeries applications that serve queues run continuously, and are always available to retrieve
messages that arrive on the queues. However, this may not be desirable when the number of messages
arriving on the queues is unpredictable. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

MQSeries provides a facility that enables an application to be started automatically when there are
messages available to retrieve. This facility is known as triggering.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 46

1. Application A, which can be either local or remote to the queue manager, puts a message on the
application queue. Note that no application has this queue open for input. However, this fact is
relevant only to trigger type FIRST and DEPTH.

2. The queue manager checks to see if the conditions are met under which it has to generate a trigger
event. If so, a trigger event is generated. Information that is held within the associated process
definition object is used when creating the trigger message.

3. The queue manager creates a trigger message and puts it on the initiation queue associated with
this application queue, but only if an application (trigger monitor) has the initiation queue open
for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.
5. The trigger monitor issues a command to start application B (the server application).
6. Application B opens the application queue and retrieves the message.

Notes:

1. If the application queue is open for input, by any program, and has triggering set for FIRST or
DEPTH, no trigger event will occur since the queue is already being served.

2. If the initiation queue is not open for input, the queue manager will not generate any trigger
messages, it will wait until an application opens the initiation queue for input.

3. When using triggering for channels, you are recommended to use trigger type FIRST or DEPTH.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 47

Each adapter created for SFA utilized triggering. The MQSeries object definitions can be seen by
viewing each system script file contained in the Clearcase repository. Specifically, you want to look for
the objects with the “trigger” attribute.

3.6.2 Starting MQSeries Applications
Trigger messages created because of trigger events that are not part of a unit of work are:

− put on the initiation queue,
− put outside any unit of work, with no dependence on any other messages
− available for retrieval by the trigger monitor immediately

Trigger messages created because of trigger events that are a part of a unit of work are put on the
initiation queue, as part of the same unit of work. Trigger monitors cannot retrieve these trigger messages
until the unit of work completes. This applies whether the unit of work is committed or backed out. If the
queue manager fails to put a trigger message on an initiation queue, it will be put on the dead-letter
(undelivered-message) queue.

Notes:

1. The queue manager counts both committed and uncommitted messages when it assesses whether
the conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of
work is backed out so that a trigger message is always available when the required conditions are
met. An example is a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This causes the queue manager to create a trigger message. If another put-request
occurs from another unit of work, this does not cause another trigger event. Rather, the number of
messages on the application queue has now changed from one to two, which does not satisfy the
conditions for a trigger event. If the first unit of work is backed out, but the second is committed,
a trigger message is still created.

However, this does mean that trigger messages are sometimes created when the conditions for a
trigger event are not satisfied. Applications that use triggering must always be prepared to handle
this situation. It is recommended to use the wait option with the MQGET call, setting the
WaitInterval to a suitable value.

2. For local shared queues (that is, shared queues in a queue-sharing group) the queue manager
counts committed messages only.

For SFA, the adapters were triggered on the trigger type of “FIRST”, the queues were then read until
empty.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 48

4 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGES)
The EAI application will be interfacing with several systems. The interfaces between EAI and other
systems may require special mechanisms called adapters and bridges.

An adapter or a bridge is a piece of software that moves data between a message on a queue and an
application or environment. Adapters handle data inbound-to and outbound-from the application or
environment.

4.1 MQSeries Application Adapter

MQSeries provides a mechanism for assured delivery of messages, which can be sent even when the
target is disconnected. It can be used to distribute work around a large number of disparate systems in an
environment where trying to propagate transactional two-phase commit is not practical.

4.2 Adapter Classifications

4.2.1 Type of Message

Adapters may be classified by the type of message that will be processed:

• Request/Reply
An incoming XML request message from the front-end is posted to the back-end. In response, the
adapter always synchronously routes the back-end results in the form of a valid XML document.

• Fire & Forget
An incoming XML request from the front-end is posted to the back-end and no response is
required.

• Notification
The adapter routes an incoming message from the back-end to the front-end in the form of a valid
XML message. This may be the reply to a message received.

All adapters written for SFA were of the Request/Reply type.

4.2.2 Interface Type

Adapters may be classified by interface type:

• Java Object - Creates Java objects that corresponds to the XML message elements.

• Host structure -

1. Converts data from valid XML values to valid host values. Uses tables for simple cases and
code for complex transformations.

2. Creates host objects that correspond to the host data structures and maps the values from the
XML objects to the host objects

• XML Message – The input data and the output data are both in XML format. The adapter may
add the standard header and perform other functions, but does not need to transform the message

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 49

4.3 MQSeries-CICS/ESA Bridge

The MQSeries-CICS/ESA Bridge enables an application, not running in a CICS environment, to run a
program or transaction on CICS/ESA and get a response back. This non-CICS application can be run
from any environment that has access to a MQSeries network that encompasses MQSeries for MVS/ESA.

A program is a CICS program that can be invoked using the EXEC CICS LINK command. It must
conform to the DPL subset of the CICS API that is, it must not use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This transaction can use BMS or
TC commands. It can be conversational or part of a pseudo conversation. It is permitted to issue
syncpoints.

4.3.1 Using the CICS Bridge

Only SFA applications that use a CICS commarea to communicate can utilize the CICS Bridge; any
applications that use terminal I/O CICS commands can use the CICS DPL Bridge.

The CICS Bridge allows an application to run a single CICS program or a ‘set’ of CICS programs (often
referred to as a unit of work). The adapter written for the CPS system utilizes the CICS Bridge. For more
information on the CPS adapter please reference the Technical Specification document. The CICS Bridge
works with the application that waits for a response to come back before it runs the next CICS program
(synchronous processing). It also works with the application that requests one or more CICS programs to
run, but doesn't wait for a response (asynchronous processing).

The CICS Bridge also allows an application to run a 3270-based CICS transaction, without knowledge of
the 3270 data stream. The CICS Bridge uses standard CICS and MQSeries security features. It can be
configured to authenticate, trust, or ignore the requestor's user ID.

With this flexibility, there are many instances where the CICS Bridge can be used. For example,

• To write a new MQSeries application that needs access to logic or data (or both) that reside on
your CICS server.

• Enabling a Lotus Notes application to run CICS programs.

• To be able to access CICS applications from a MQSeries Java client application or a web browser
using the MQSeries Internet gateway.

4.3.2 CICS Bridge at Work

This section explains how the CICS Bridge works and the options available when deciding what level of
security to use.

With respect to system setup, note the following:

• Ensure that the MQSeries-CICS adapter is enabled.

• The CICS Bridge requires that both MQSeries and CICS are running in the same MVS image.

• The MQSeries request queue must be local to the CICS Bridge, however the response queue can
be local or remote.

• The CICS bridge tasks must run in the same CICS as the bridge monitor. The user programs can
be in the same or a different CICS system.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 50

4.4 Running CICS DPL programs

Data necessary to run the program is provided in the MQSeries message. The bridge builds a
COMMAREA from this data, and runs the program using EXEC CICS LINK.

The following shows the components and data flow to run a CICS DPL program.

Figure 2 – CICS DPL Transaction

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS program, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a ‘start
unit of work’ message is waiting (CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS DPL Bridge task is started with the
appropriate authority.

4. The CICS DPL Bridge task removes the message from the request queue.

5. The CICS DPL Bridge task builds a COMMAREA from the data in the message and issues an
EXEC CICS LINK for the program requested in the message.

6. The program returns the response in the COMMAREA used by the request.

7. The CICS DPL Bridge task reads the COMMAREA, creates a message, and puts it on the reply-
to queue specified in the request message. All response messages (normal and error, requests and
replies) are put to the reply-to queue with default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user programs. There is no limit to
the number of messages you can send to make up a unit of work.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 51

4.4.1 Running CICS 3270 transactions

Data necessary to run the transaction is provided in the MQSeries message. The CICS transaction runs as
if it has a real 3270 terminal, but instead uses one or more MQSeries messages to communicate between
the CICS transaction and the MQSeries application. Unlike traditional 3270 emulators, the bridge does
not work by replacing the VTAM flows with MQSeries messages.

Instead, the message consists of a number of parts called vectors, each of which corresponds to an EXEC
CICS request. Therefore, the application is talking directly to the CICS transaction, rather than via an
emulator, using the actual data used by the transaction (known as application data structures or ADSs).

The following shows the components and data flows to run a CICS 3270 transaction.

Figure 3 – CICS 3270 Transaction

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS transaction, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a ‘start unit
of work’ message is waiting CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started with the appropriate
authority.

4. The MQ-CICS bridge exit removes the message from the queue and changes task to run a user
transaction.

5. Vectors in the message provide data to answer all terminal related input EXEC CICS requests in the
transaction.

6. Terminal related output EXEC CICS requests result in output vectors being built.

7. The MQ-CICS bridge exit builds all the output vectors into a single message and puts this on the
reply-to queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 52

8. The CICS 3270 bridge task ends.

A traditional CICS application usually consists of one or more transactions linked together as a pseudo
conversation. In general, the 3270 terminal user entering data onto the screen and pressing an AID key
starts each transaction. This model of application can be emulated by a MQSeries application. A
message is built for the first transaction, containing information about the transaction, and input vectors.
This is put on the queue.

The reply message will consist of the output vectors, the name of the next transaction to be run, and a
token that is used to represent the pseudo conversation. The MQSeries application builds a new input
message, with the transaction name set to the next transaction and the facility token set to the value
returned on the previous message. Vectors for this second transaction are added to the message, and the
message put on the queue. This process is continued until the application ends.

An alternative approach to writing CICS applications is the conversational model. In this model, the
original message might not contain all the data to run the transaction. If the transaction issues a request
that cannot be answered by any of the vectors in the message, a message is put onto the reply-to queue
requesting more data. The MQSeries application gets this message and puts a new message back to the
queue with a vector to satisfy the request.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 53

5 APPLICATION INTEGRATION
This section describes the guidelines to integrate an application into the SFA EAI Bus Architecture. Many
aspects into integrating an application into the EAI Bus will depend on the application. Some components
may or may not be required and some additional components may be required depending on the
application. There are nine legacy systems which have the basic infrastructure defined to connect into the
EAI Bus. Although the infrastructure may be defined, it may require modifications depending on varying
factors, which include but is not limited to, capacity planning and performance. The following are the
nine legacy systems:

1. Central Processing System (CPS)
2. Direct Loan Servicing System (DLSS)
3. Electronic Campus Based System (eCBS)
4. Financial Management System (FMS)
5. LO System – Electronic Master Promissory Note (eMPN)
6. LO System – Promissory Note Imaging (P-Note Imaging)
7. National Student Loan Data System (NSLDS)
8. Post-Secondary Education Participants System (PEPS)
9. Student Aid Internet Gateway (SAIG/bTrade)

5.1 Legacy System Application EAI Integration Considerations

This section will provide overall guidelines for beginning the process of integrating applications at SFA
and utilizing the EAI Bus, as developed for the Release 1.0 and 2.0 EAI Core Architecture. To integrate
an application on any of the Release 1.0 and 2.0 legacy system, first determine the application EAI
requirements. Does it require an existing adapter, developed as part of the EAI Core architecture, or some
modifications to use MQSeries API calls? What is the volume of data traveling through the bus? What
are the message sizes? Frequency? What are the application security requirements? Determine the
message formats – input and output.

The following is a starting list of EAI Bus components to review when integrating the application:
1. What are the applications requirements
2. Are additional MQSeries objects required
3. Can the application utilize the core adapter

Once the application requirements are clearly defined as they pertain to the EAI, the application team
should begin their EAI application design and development phase. For Release 1.0 and 2.0 of the EAI
Core Architecture MQ Adapters were built for each Release 1.0 and 2.0 legacy system to validate the MQ
Messaging infrastructure and the functionality to execute a sample non-application specific function on
each legacy system. These developed MQ Adapters provide a starting point to be used by the application
development teams, as a baseline to determine their applicability or the amount of modifications required
reusing these adapters for each application.

The following sections provide an overview of what was developed for each Release 1.0 and 2.0 legacy
system and an overview of each of the developed MQ Adapters.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 54

5.2 Central Processing System (CPS)

The CPS system has the MQSeries CICS Bridge and DPL adapter installed. Applications that can utilize
the DPL adapter cannot use any CICS terminal related commands and must be able to communicate via
the CICS COMMAREA. To help guide the design considerations of an application to use the CICS DPL
Bridge the “MQSeries Application Programming Guide” and “MQSeries Application Programming
Reference” books can be used. References to all IBM manuals can be found in Appendix A.

For an application to use the CPS EAI Bus connectivity, the requirements of the application must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
be defined. If the application is to communicate with another system, then for each system a local queue
and remote queue must be defined. At least one for input messages and one for output messages. If an
additional input queue object is required, it will require an additional CICS DPL Bridge Monitor
transaction defined and configured to automatically start. Each CICS DPL Bridge Monitor transaction
will monitor one queue object.

An application that can be supported as a DPL application by the CICS DPL Bridge is required to use the
CICS COMMAREA to communicate. It cannot contain any CICS terminal related commands. Although,
to hook it into the EAI Bus, format the request message with the required message structures. It is
recommended to build these structures into the MQSI message flow, since it supports these structures
with little effort. The main structure that can be used with the CICS DPL Bridge is the MQSeries CIH
header. The use of a header is optional and was not used at SFA, however, the application may require its
use. The CICS bridge application must set a number of fields in the MQMD and the MQCIH in order to
use the bridge successfully. For more information, see the MQSeries Application Programming Guide.

If the application can utilize the CICS DPL Bridge, all the work will be required from the system that
sends the request into CPS. The MQSI message flows would be used to build the common structures,
such as the MQSeries CIH structure.

The MQ Adapter developed for the CPS system utilizes the MQ CICS DPL Bridge. A request message,
consisting of a SSN and a name id, is originated from the source application. The message is routed
through the MQSeries messaging infrastructure using the EAI bus infrastructure. The message is
transformed by MQSI to append the required records to the message data, as expected by the CICS
program on the CPS system. The message is then routed from the EAI Bus to the CPS system using the
MQSeries CICS DPL Bridge. The CICS DPL Bridge enables the originating application to access
information residing in the CPS OS/390 platform by invoking the CICS program running in the CICS
environment to process the message and send a reply back.

In order to integrate applications on the CPS system through the EAI Bus the application team must first
identify the required CICS transactions, if they exist, and configure the CICS DPL Bridge. The input
messages will be retrieved and the message ID will be evaluated to call the appropriate CICS program.
For those cases where an existing CICS program does not exist, the application development team will
have to develop a CICS application to provide the required functionality. Either case requires the
configuration of the CICS DPL Bridge to map to the appropriate CICS program.

Input and output for using the CPS MQ Adapter:

Inputs: Message data from the queue. This data is application dependent. Maximum length of
application data can be up to 32k.

Outputs: Application specific data is written to a MQSeries queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 55

5.3 Direct Loan Servicing System (DLSS)

The DLSS system has a MQSeries trigger monitor and two custom adapters installed. Applications that
can utilize these adapters use some sort of file transfer process today. For an application to use the DLSS
EAI Bus connectivity, the requirements of the application must be defined. If the application is to
communicate with another system, then for each system a local queue and remote queue must be defined.

The DLSS MQ Adapter receives a message containing a SSN and transforms this message, via MQSI into
the expected format for the DLSS application. The DLSS application is a COBOL program and has a
very extensive record structure as input. An input message consisting of the SSN is sent from the source
system to the EAI bus. In the MQSI message flow, the message is transformed by appending required
records to the message. The message is then be sent to the DLSS system where a MQ adapter will read
from the queue and output the data to a flat file and then release the sequence of programs from the
OpenVMS batch queue. The DLSS application processes the file and in turn creates another file with the
detail corresponding to each SSN initially sent to the DLSS system. Following the execution of the
application, the adapter is run to read from the file created by the DLSS application and puts the
message(s) on the queue to be sent back to the source system. Once the batch jobs have been released,
there is a five-minute waiting period for an output file to be generated. If no output file is found, an error
message is returned to the source system.

Inputs: The program expects one (1) parameter as input and one (1) filename to read data from.

(1) Filename to read data from

Type of input parameter char[500] – character array of size 500.

Maximum length of filename is 500 characters

Purpose of input parameter: Tells the adapter the filespec to read data from.

Outputs: Message is written to a MQSeries queue.

In addition to the MQ Adapters described above, the EAI Core team has developed another set of MQ
adapters to execute a real-time DLSS transaction. In the case of the real-time transaction, a message is
sent to the DLSS system and the message data is read from the queue by the adapter. Then, a DLSS
transaction/job is executed, results are put back on a message queue, and returned to the source system for
processing/display.

5.4 Electronic Campus Based System (eCBS)

The eCBS system has MQSeries Messaging, MQ eCBS Adapter, the ITA Reusable Common Service –
Persistence Framework, and the Reusable EAI Function–Common Log Component installed on the
system. The MQ eCBS Adapter is a custom built reusable component for any SFA applications that
require access to eCBS data. Currently SFA applications use a file transfer process, but the custom built
adapter will provide these applications the ability to communicate with eCBS through a batch interface or
a real-time interface. The batch interface will write data to and read data from a file, while the real-time
interface will invoke stored procedures within the eCBS database. For an application to use the eCBS
EAI Bus connectivity, the requirements of the application must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
to be defined. If the custom adapter is to communicate with multiple source systems, then additional

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 56

local queues must be defined for each source system. These queues will handle input messages that will
be processed by the custom adapter and sent to eCBS through its batch or real-time interface. Since the
MQSeries Trigger Monitor will monitor one queue object, additional MQSeries Trigger Monitors may
need to be configured, as well as the appropriate MQSeries objects. This includes initiation queues and
process definitions. Also, since MQSeries messages are sent back to the source application through the
EAI Bus, queue manager aliases will need to be created for each of the source systems.

Batch Interface

The batch interface of the custom adapter developed as part of Release 2.0 EAI Core Architecture is a
Java application which receives an MQSeries message as input and creates a file that will be processed by
eCBS. The content of the input MQSeries message is a XML string that the adapter parses to determine
where to place the file and the contents of the file. The custom adapter then waits for an output file
created by eCBS and places the results, as an XML string, in a MQSeries message that is sent back to the
source application.

Input: The custom adapter expects data in the following format:

<eCBSAdapterRequest>

InputFileName;FileContent;OutputFileName;

</eCBSAdapterRequest>

where

• InputFileName is the absolute directory path and the name of the file to be created.

• FileContent is the contents that are to be placed in the file defined in the InputFileName.

• OutputFileName is the absolute directory path and the name of the file where the results from
eCBS processing is stored

Output: The custom adapter will send any results received from eCBS in the following format:

<eCBSAdapterResponse>result</eCBSAdapterResponse>

where

• result is the contents of the output file created by eCBS

The eCBS process that is used for EAI Core validation is not a production feature so any future
application would require analysis of the data access requirements from the eCBS system and the
development of the appropriate eCBS process.

Real-Time Interface

The real-time interface of the custom adapter developed as part of Release 2.0 EAI Core Architecture is a
Java application which receives a MQSeries message as input and then invokes a stored procedure using
ITA’s Reusable Component Service – Persistence Framework. The content of the input MQSeries
message is a XML string that the adapter parses to determine what database to connect to and which
stored procedure to invoke. The custom adapter places the results from the stored procedure, as an XML
string, in a MQSeries message that is sent back to the source application.

Input: The custom adapter expects data in the following format:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 57

<eCBSAdapterRequest>

DataSource;Userid;Password;StoredProcedure;

</eCBSAdapterRequest>

where

• DataSource is the name of the data source created in WebSphere for the corresponding database.
This is needed in order to use ITA_RCS_Persistence component.

• Userid is the userid to connect to the data source

• Password is the password for the userid used to connect to the data source

• StoredProcedure is the stored procedure call to be executed by the adapter

Output: The custom adapter will send any results received from eCBS in the following format:

<eCBSAdapterResponse>result</eCBSAdapterResponse>

where

• result is the values of the out parameters returned from the stored procedure

The eCBS stored procedure that processes the data found in the input table for EAI Core validation is not
a production feature so any future application would require analysis of the data access requirements from
the eCBS system and the development of the appropriate eCBS process.

The MQ ECBS Adapter handles MQSeries and non-MQSeries errors that occur during the batch and real-
time interface to eCBS. All MQSeries errors are caught by the adapter and passed to the Reusable EAI
Function-Common Log Component. In addition, if a message cannot be placed on a MQSeries queue, the
message is written to a file, to allow for unsent messages to be sent at a later time. All non-MQSeries
errors are caught by the adapter and are sent back to the source application in the output formats specified
above.

5.5 Financial Management System (FMS)

The FMS system has MQSeries Messaging, Application Messaging Interface (AMI), MQ FMS Adapter,
and the Reusable EAI Function-Common Log Component installed on the system. The MQ FMS
Adapter is a custom built reusable component for any SFA applications that require access to FMS data.
Currently SFA applications use a file transfer process, but the custom built adapter will provide these
applications the ability to communicate with FMS through a batch interface or a real-time interface. The
batch interface will write data to and read data from a file, while the real-time interface will write data to
and read data from a database table on the FMS system. For an application to use the FMS EAI Bus
connectivity, the requirements of the application must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
to be defined. If the custom adapter is to communicate with multiple source systems, then additional
local queues must be defined for each source system. These queues will handle input messages that will
be processed by FMS through its batch or real-time interface. Since the MQSeries Trigger Monitor will
monitor one queue object, additional MQSeries Trigger Monitors may need to be configured, as well as

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 58

the appropriate MQSeries objects. This includes initiation queues and process definitions. Also, since
MQSeries messages are sent back to the source application through the EAI Bus, queue manager aliases
will need to be created for each of the source systems.

Batch Interface

The batch interface of the custom adapter developed as part of Release 2.0 EAI Core Architecture is a
Java application which utilizes the AMI to receive a MQSeries message as input and create a file that will
be processed by FMS. The content of the input MQSeries message is a XML string that the adapter
parses to determine where to place the file and the contents of the file. The custom adapter then waits for
an output file created by FMS and places the results, as an XML string, in a MQSeries message that is
sent back to the source application.

Input: The custom adapter expects data in the following format:

<FMSAdapterRequest>

InputFileName;FileContent;OutputFileName;

</FMSAdapterRequest>

where

• InputFileName is the absolute directory path and the name of the file to be created.

• FileContent is the contents that are to be placed in the file defined in the InputFileName.

• OutputFileName is the absolute directory path and the name of the file where the results from
FMS processing is stored

Output: The custom adapter will send any results received from eCBS in the following format:

<FMSAdapterResponse>result</FMSAdapterResponse>

where

• result is the contents of the output file created by FMS

The FMS process that is used for EAI Core validation is not a production feature so any future application
would require analysis of the data access requirements from the FMS system and the development of the
appropriate FMS process.

Real-Time Interface

The real-time interface of the custom adapter developed as part of Release 2.0 EAI Core Architecture is a
Java application which utilizes the AMI to receive a MQSeries message as input and inserts data into a
database table that will be processed by FMS. The content of the input MQSeries message is a XML
string that the adapter parses to determine what database tables to connect to and how to manipulate those
tables. The custom adapter then monitors an output database table where results from FMS are placed.
The custom adapter places the results from the output database table, as an XML string, in a MQSeries
message that is sent back to the source application.

Input: The custom adapter expects data in the following format:

<FMSAdapterRequest>

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 59

JDBCUrl;Userid;Password;InsertSQLForInput;SelectSQLForOutput;

</FMSAdapterRequest>

where

• JDBCUrl is the JDBC URL that provides a way of identifying a data source so that the
appropriate driver will recognize it and establish a connection.

• Userid is the userid to connect to the data source.

• Password is the password for the userid used to connect to the data source.

• SelectSQLForInput is the insert sql statement that the adapter will execute against the database
table for sending data to FMS.

• SelectSQLForOutput is the select sql statement that the adapter will execute against the database
table for getting data from FMS.

Output: The custom adapter will send any results received from eCBS in the following format:

<FMSAdapterResponse>result</FMSAdapterResponse>

where

• result is the data found in the output database table

The FMS process that is used for EAI Core validation is not a production feature so any future application
would require analysis of the data access requirements from the FMS system and the development of the
appropriate FMS process.

The MQ FMS Adapter handles MQSeries and non-MQSeries errors that occur during the batch and real-
time interface to FMS. All MQSeries errors are caught by the adapter and passed to the Reusable EAI
Function-Common Log Component. In addition, if a message cannot be placed on a MQSeries queue, the
message is written to a file, to allow for unsent messages to be sent at a later time. All non-MQSeries
errors are caught by the adapter and are sent back to the source application, in the output formats
specified above.

5.6 LO System – Electronic Master Promissory Note (eMPN)

The LO System – Electronic Master Promissory Note (eMPN) system has an MQSeries trigger monitor
and a custom adapter installed. The MQ LO System – eMPN Adapter is a custom built reusable
component for any SFA applications that requires retrieval of eMPN information stored on the LO
System. For an application to use the eMPN EAI Bus connectivity, the requirements of the application
must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
be defined. If the application is to communicate with another system, then for each system a local queue
and remote queue must be defined. At least one queue for input messages and one queue for output
messages should be defined. If an input queue object is required, it will require a trigger monitor to be set
up. Since the MQSeries Trigger Monitor will monitor one queue object, additional MQSeries Trigger
Monitors may need to be configured, as well as the appropriate MQSeries objects. This includes

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 60

initiation queues and process definitions. Also, since MQSeries messages are sent back to the source
application through the EAI Bus, queue manager aliases will need to be created for each of the source
systems.

The LO System – Electronic Master Promissory Note (eMPN) MQ Adapter processes requests in real-
time. It receives message request data, in XML format, to retrieve eMPN data from the eMPN database.
The input message specifies the Social Security Number and Date of Birth of the eMPN applicant, as well
as the date of the application. The incoming request is routed through the EAI Bus for transformation via
MQSI. The modified message is then passed to the LO System, where the MQSeries adapter resides. The
adapter invokes an eMPN API, with the incoming request message as a parameter. This API will check
the database for the requested information and return a resulting XML string back to the MQ Adapter.
The returned XML string may contain the requested information or an error message. The result will be
put into a message queue, to be sent back to the calling application for processing.

Input: The custom adapter expects data in the following XML format:

<?xml version="1.0" standalone="yes"?>

<EPNRequestRoot>

 <requestType>ref</requestType>

 <Request>

 <ssn>123456789</ssn>

 <dob>01/01/1981</dob>

 <signedDate>01/01/2001</signedDate>

 </Request>

</EPNRequestRoot>

where

• 123456789 should be replaced with the loan applicant’s social security number.

• 01/01/1981 should be replaced with the loan applicant’s date of birth.

• 01/01/2001 should be replaced with the date the loan applicant signed the loan application.

Output: The custom adapter will send any results received from eMPN in the following format:
<?xml version="1.0"?>
<EPNResponseRoot>result</EPNResponseRoot>

where

• result are values relating to the loan applicant.

If the MQSeries adapter encounters an error, such as a timeout of the eMPN API, then it will place an
XML string explaining the nature of the error into a message queue, to be sent back to the calling

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 61

application for processing. The exception is any error that makes it impossible to return an MQSeries
reply message.

5.7 LO System – Promissory Note Imaging (P-Note Imaging)

The LO System – Promissory Note Imaging system adapter consists of a java class that can transmit a
generic package of data to any destination via the EAI Bus. This is a reusable component that is available
to any application that needs to send data in one direction, via the EAI bus. Applications that utilize the
adapter will be able to send information over the EAI Bus without having to become involved in the
intricacies of MQSeries programming.

The adapter test harness invokes the adapter when it receives a queued message that is sent from the
front-end WebSphere Application Server. The adapter add-on then returns the original message in a
slightly modified format. In a production environment, the adapter add-on will be invoked exclusively for
one-way data transmission. For an application to use the P-Note Imaging EAI Bus connectivity, the
requirements of the application must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
be defined. If the application is to communicate with another system, then for each system a local queue
and remote queue must be defined for output messages. Since the MQSeries Trigger Monitor will
monitor one queue object, additional MQSeries Trigger Monitors may need to be configured, as well as
the appropriate MQSeries objects. This includes initiation queues and process definitions. Also, since
MQSeries messages are sent back to the source application through the EAI Bus, queue manager aliases
will need to be created for each of the source systems.

The output of the adapter is an arbitrary string of data sent by the LO System-P-Note Imaging component.
As this is a one way transmission, there is no input.

The EAI java class utilizes the MQSeries Application Messaging Interface (AMI). The actual MQSeries
object names are stored in a repository and associated with an AMI “service point”. Applications that
invoke the class to send data specify the destination by passing the service point name along with the data
to be sent. The information is then sent to the intended destination via the EAI bus. When the message
reaches its destination, an application can read the data off of the MQSeries queue and process it.

When an error is encountered, this will prevent a return message to be sent. An error message will
therefore not be sent since the messaging capability is not functioning properly. Application programs
that utilize the custom adapter should define error handling within the calling function.

5.8 National Student Loan Data System (NSLDS)

The NSLDS system has the MQSeries OS/390 Batch Trigger Monitor, two custom batch adapters and a
Cool:Gen adapter installed. Applications that can utilize these adapters use some sort of FTP process or

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 62

CICS Cool:Gen transaction today. For an application to use the NSLDS EAI Bus connectivity, the
requirements of the application must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
defined. If the application is to communicate with another system, then for each system a local queue and
remote queue must be defined. The requirements may need to have additional MQSeries OS/390 Batch
Trigger Monitors set-up. The MQSeries OS/390 Batch Trigger Monitor will monitor one queue object.
The Cool:Gen adapters will need to be generated from the Cool:Gen product set.

An application that can use the custom batch adapters will expect a flat file as input and will produce a
flat file as output. The applications input file will be created from one of the adapters. The adapter will
pull the input file from MQSeries as messages and create the actual application input file. This will allow
the application to process the file as input. The application would create an output file to be transported as
the reply back through the Bus. The creation of the application input file causes the application to start
using the NSLDS CA7 product. The second adapter will be executed as the last step of the applications
job. The second adapter will pull the file and push it through MQSeries as messages.

For NSLDS transactions an application that can use the Cool:Gen adapter will require a Cool:Gen CICS
transaction be present on the NSLDS system. This is the Cool:Gen CICS transaction that has been
generated to use the EAI Bus with MQSeries. The Cool:Gen MQSeries adapters are generated from the
Cool:Gen toolset for each of the Cool:Gen CICS transactions that are required to be accessible from the
EAI Bus.

For NSLDS batch processing any application that currently uses an FTP type process, can utilize these
custom adapters to replace the FTP logic.

5.8.1 NSLDS Batch

For the NSLDS batch processing, two MQ Adapters and an OS/390 trigger monitor were developed. The
two adapters are NSBATCH1 and NSBATCH2, both Cobol programs. The NSBATCH1 adapter reads
messages from a MQSeries queue and writes them to a file. The NSBATCH2 adapter reads data from a
file and puts the data as a message to a MQSeries queue.

NSBATCH1: This program reads messages off an inbound queue, parses the messages to extract PELL
records and writes the PELL records to a flat file.

ARB62000: Executes Procedure: ARB62000 This is an existing multi-step process that does edit checks
against the PELL data and creates a flat file of exception/error records for those Pell records that fail the
edits.

NSBATCH2: This program reads in the exception/error file created in ARB62000 and builds outbound
messages stringing multiple exception/error records and puts the messages to the outbound reply queue.

OS390 Batch Trigger Monitor

The Trigger Monitor allows a batch application process to be submitted automatically when a message
arrives on an inbound application queue.

When the Pell message arrives from the test application the Queue manager, NTT1, puts the message to
the inbound applications queue, NSLDS.FROM.EAI.REQPELL.

Since the inbound queue is defined for triggering ‘first’ the Queue Manager will put the data defined in
the Process definition: NSLDS.PELL.PROCESS as a message to the initiation queue,
NSLDS.BATCH.INIT, when the first message arrives in the queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 63

The Batch Trigger Monitor monitors the initiation queue and when a message arrives the Batch Trigger
monitor executes the batch process and supplies the Qmgr name and queue name to the adapter,
NSBATCH1.

NSBATCH1

One control message is sent from the source server with each PELL file. The control message contains
information to tell the program NSBATCH1 how to process the PELL records off the inbound queue.

CM-MSG-CNT – tells how many data messages to process.

CM-MAXMSG-LEN – tells when to stop parsing PELL records from a single message.

CM-TOTAL-REC-CNT – also tells when to stop parsing PELL records from all messages.

CM-LRECL – tells the length of the records to be parsed.

NSBATCH1 does an initial keyed get of msgid = 1 to retrieve the control message as the first message.
Using the values from the control message, it pulls the messages from the inbound queue until msg-count
= CM-MSG-CNT. For each message, it parses the PELL records from the message for a length of CM-
LRECL and writes the records to the PELL output file until CM-TOTAL-REC-CNT or CM-MAXMSG-
LEN is reached.

NSBATCH1 writes out the control message to a control file to be used by the NSBATCH2 program.

Inputs: The program expects 2 messages as input:

1) Control message:

Record length: 177 bytes character format
Purpose of input parameter is to tell the adapter:

1. Number of data messages

2. Max data message length

3. Number of records in data message

4. Length of data records

2) Data message
Pell Grant request records
Record length: 300 bytes character format

Outputs: A flat file is generated as output. It’s a file of Pell request records.

NSBATCH2

The control file created in NSBATCH1 contains information to tell the program NSBATCH2 how to
build the messages for the put to the outbound queue.

CM-MAXMSG-LEN – tells when to stop reading error records and stringing them out an outbound
message.

CM-LRECL – tells the length of the records to be strung together

NSBATCH2 reads the control file once (only one record) and moves values to WS. The program then
reads the error file and moves each record out to the outbound message buffer by the length of CM-

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 64

LRECL until CM-MAXMSG-LEN or end-of-file condition on the Error file. Then put the messages to
the outbound replyto queue.

To compile NSBATCH1 and NSBATCH2: MQADM2.A.JCLLIB(CMPJCL02) specify which program
needs be compiled.

Inputs: The program expects one file as input.

File description: Errors generated from processing Pell requests through the existing NSLDS
batch job: ARB62000.

The filename is limited to a maximum length of 109 characters.

The purpose of input file is to send back Pell requests that are in error back to the test application.

Outputs: Message is written to a MQSeries queue.

5.8.2 NSLDS Transaction

The MQ Adapter developed for the NSLDS Transaction capability was built using the Cool:Gen
development tool set. For any Cool:Gen transactions to be generated to use the EAI Bus the application
development team must have the Cool:Gen development tools and the capability to execute Cool:Gen
applications. The Cool:Gen application is deployed onto the source server as well as the NSLDS
mainframe system. The source server generates the transaction data, puts the message data into a
MQSeries message queue, using the generated Cool:Gen MQ Adapter, routes the message to the NSLDS
system for processing, and retrieves the message data from the message queue via Cool:Gen MQ Adapter
deployed onto the mainframe system. The Cool:Gen server executes the specified Cool:Gen CICS
transaction and returns the results back to the source server for processing/display.

5.9 Post-Secondary Education Participants System (PEPS)

The PEPS system has a MQSeries trigger monitor and a custom adapter installed. Applications that can
utilize this adapter will need to be stored procedures. For an application to use the PEPS EAI Bus
connectivity, the requirements of the application must be defined.

Depending on the application requirements, it may or may not require additional MQSeries queue objects
defined. If the application is to communicate with another system, then for each system a local queue and
remote queue must be defined. One for input messages and one for output messages. The requirements
may need to have additional MQSeries Trigger Monitors set-up. The MQSeries HP-UX Trigger Monitor
will monitor one queue object. If the application is to deliver messages to another system, then another
remote queue will need to be defined.

The MQ Adapter developed as part of the Release 1.0 EAI Core Architecture provides a custom
developed Java adapter which receives an input message, and executes an Oracle stored procedure to
process the request. The PEPS MQ Adapter is a reusable component for any SFA applications that
require access to the PEPS database via a stored procedure. The adapter calls the stored procedure to
extract the requested database information and returns the results back to the source application. The
stored procedure developed for the EAI Core validation is not a production feature so any future
application development would require any analysis of the data access requirements from the PEPS
system and the development of the required stored procedures. The input data to the PEPS system is in
XML format.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 65

5.10 Student Aid Internet Gateway (SAIG/bTrade)

The bTrade system has a MQSeries trigger monitor and a custom adapter installed. Applications that can
utilize the use of the adapter will be able to pull bTrade data from a bTrade mailbox. For an application to
use the bTrade EAI Bus connectivity, the requirements of the application must be defined.

Depending on the application requirements, it may or may not require the definition of additional
MQSeries queue objects. If the application is to communicate with another system, then for each system
a local queue and remote queue must be defined. One for input messages and one for output messages.
The requirements may need to have additional MQSeries Trigger Monitors set-up. The MQSeries HP-UX
Trigger Monitor will monitor one queue object.

bTrade.com has provided a Java based application connectorAPI to support the retrieval of messages
from a bTrade.com mailbox. The EAI Core Architecture team has developed a MQ Adapter to interface
with the bTrade application, through the bTrade connectorAPI, to extract data from a mailbox on the
bTrade server.

The bTrade MQ Adapter receives a message request data, in XML format, to retrieve data from a mailbox
on the bTrade server. The input message specifies the name of the mailbox to retrieve the data from on
the bTrade server. The MQ Adapter developed for the bTrade server will receive the message, route the
message data through the EAI Bus for transformation via MQSI, call the bTrade connectorAPI with the
appropriate parameters. The connectorAPI will check the status of the specified mailbox, perform the
appropriate action, and return results back to the MQ Adapter. The results will be put into a message
queue, sent back to the calling application for processing.

Errors will be reported in the MQRbTrade debug output (tr1debug.out and tr2debug.out) and the
MQRbTrade XML replies (tr1xml.out and tr2xml.out) on the bTrade server.

All application and MQ errors and exceptions are printed to the MQbTrade standard error and standard
output streams. Additionally, all application and MQ errors and exceptions are returned in the MQ reply-
message XML status element. The exception is any error that makes it impossible to either return a MQ
reply message or successfully issue a connectorAPI endMessage for retrieval of a single bTrade.com
mailbox message.

Inputs to the MQ Adapter on the bTrade server are XML data with the required mailbox name and
parameters as specified in the bTrade specification document.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 66

6 REUSEABLE EAI FUNCTIONS
Reusable EAI functions described in the following section are application services that can be utilized by
applications integrated with the EAI Core Architecture. Additional reusable functions will be included as
they are developed and deployed in future EAI Core Architecture efforts.

6.1 EAI Common Log Function

The following outlines design and implementation information required to utilize the EAI Common Log
Function.

6.1.1 Interface Design Specification

Interface Name: EAI Common Log Function

Interface Type: Uni-Directional

Interface Short Description: This interface enables applications to record events to the local and
centralized logs.

Source Application: Any

Destination Application: Local and centralized logs.

Functional Requirement References: Message Logging

Related Interface Control Document: N/A

Related Unit Test Document: TBD

Other Related Interfaces: N/A

6.1.2 Interface Overview

Flow Diagram:

Centralized
Log
(4)

Application
(1)

MQSeries
(3)

Log function
(2)

Local Log
(5)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 67

Name Description

1 Application The source application

2 Log Function A library function that sends the log entry to the centralized and/or local logs.

3 MQ Series The MQ Series transport mechanism.

4 Centralized Log The centralized log repository.

5 Local Log The local log file.

6.1.2.1 Detailed Technical Overview

An application (1) generates an event that it needs to record. The application will call the log function
(2) according to the specified function signature. The log function creates a message. It then sends the
message via MQ Series (3) to the Centralized Log (4). The log function also records the event on the
local log (5).

6.1.2.2 Background EAI Logging Objectives

The “logging” framework will help standardize and simplify exception handling for SFA’s application
teams. The standardized exception handling will also help reduce the possibility of uncaught exception
scenarios.

An exception is a code or language construct that indicates when an unusual or unexpected error
condition occurs in an application. Examples of exceptions are hardware, network, I/O, or memory
problems. If an exception is “handled” in code, it can be dealt with gracefully and will not necessarily
have to cause program termination. Exception handling provides a mechanism for writing robust,
resilient code that is capable of dealing with the unexpected.

In addition to exception logging, the following categories were reviewed for consideration:

1. Performance Logging

2. Capture Service Level Agreement Metrics

3. Provide information for system tuning

4. Exception Logging

5. Provide clarity as to where the problem has occurred

6. Debugging/Tracing

7. Aid developers in development and testing

8. Score Card Logging

9. Provide overall transaction status; i.e file X was transferred from server A to server B

10. Alert Logging

11. Provide a mechanism to alert operations of a problem

Empirically it can be observed that information required when satisfying the varied logging requirements
overlap. For example information required to “Alert” operations of a problem will also aide in “Problem
Identification”.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 68

6.1.2.3 Logging Thresholds Provided via EAI Logging facility

Each message logged within the framework has a severity. A masking of this value determines whether
the Logger allows the message to continue to the destination.

The severities allowed within a message are:
• Debug Logging

− These are debugging messages usually placed by the programmers for the tracing and debugging
purposes.

• Informational Logging

− These are useful informational messages about what is occurring.

• Score Card Logging

− Provides an overall status of the interface request; for example a datagram message that originates
from NSLDS and terminates at COD would produce logging records for use as an audit mechanism
(This feature is not currently implemented).

• Warning Logging

− These messages warn that something abnormal has happened, but that the system will attempt to
recover from it. These messages are usually used by programmers to show that something is starting to
go wrong.

• Error Logging

− These messages state that something abnormal has occurred, but that it is not severe enough to cause
the system to fail in general. A specific task may fail and some users may get an error, but the system
will keep going. Exceptions are generally logged at this level.

− For example, if a Loggers mask is set to INFO, then any message that comes in with a severity that is
below INFO will be sent on to the destination. A message that has severity DEBUG will be ignored.
With this Log Mask, all info, warning, error, and fatal messages will show up at the destination.

INFO Log Mask

DEBUG

SCORE CARD

WARNING

ERROR

V
i
s
i
b
i
l
i
t
y

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 69

6.1.2.4 Configuration Parameters

The following configuration parameters are required for message logging.

Description Variable Example

Environment Variable identifying
location of configuration file and
name of configuration file

EAILOG_PATH C:\somedirectory\eailog\eailog.ini

Logging Threshold LOGGING_THRESHOLD 0 (Debug)

Log file path name LOGGING_PATH_NAME C:\somedirectory\eailog\
eailog.yyyymmdd.txt

Remote queue LOGGING_REMOTE_QUEUE EAI.LOG

6.1.2.5 Component Model

The following function calls form the public interface of the Error logging subcomponent. These public
interfaces will be published on the following platforms:

- Solaris

- HP-UX

- OS/390

- OpenVMS (no AMI)

1. For AMI enabled platforms, logging will be invoked via AMI’s “Policy Handler Interface”. “Policy
Handler” eliminates the need for EAI BUS developers to invoke the logging facility for interactions that
utilize MQSeries resources. “Policy Handler Post Transport Request Invocations” will be utilized to
execute the logging mechanism.

Post-transport requests:

Post-MQBACK

Post-MQBEGIN

Post-MQCLOSE

Post-MQCMIT

Post-MQCONN

Post-MQCONNX

Post-MQDISC

Post-MQGET

Post-MQINQ

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 70

Post-MQOPEN

Post-MQPUT

Post-MQPUT1

Post-MQSET.

2. C/C++ function interface:

long EAILog(

 long lSeverity,

 char *msgCode,

 char *msgText,

 char *interfaceid);

3. A Java interface (JNI).

public class EAIMSGLOG {

 public native int eaiLog(long severity,

 String msgCode,

 String msgText,

 String interfaceid);

package gov.ed.eailog;

6.1.3 Design Assumptions
ASSUMPTIONS
1 The application is expected to call the log function whenever an event needs to be logged. At a minimum,

informational logging will occur post-transport request.
2 The application is expected to call the log function according to the specified function signature.
3 Each application using this API is expected to install and configure MQ Series v5.2 (OpenVMS excluded).
4 EAI BUS File Transfer product includes a logging mechanism.
5 MQSeries 5.2 is not supported on OpenVMS, therefore all logging must be coded by the developer
6 Applications must use this mechanism within EAI adapters; at a minimum this will be called at the start and

end of a adapter
7 All servers must have a C/C++ compiler
8 A COTS mqseries monitoring tool will be utilized

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 71

6.1.4 Design Dependencies
DEPENDENCIES
1 MQSeries 5.2
2 AMI Support Pack

6.1.5 Detailed Technical Design

Component Name: EAI Common Log Function
Related Interface Control Document: N/A
Technical Design Description: Applications will call the EAI Common Log Function according to the
previously specified function signature:

Field Descriptions:
Message logging output file description:

 Description Informational
Logging

Exception Logging Score Card Logging

Version the version of the
EAILogStruct
definition being
used; currently

1 1 1

Severity the severity of the
message being
logged; valid
values are:
00 – Debug
04 – Score Card
08 - Informational
12 – warning
16 – error

msgCode a freeform field
for error codes;
typically a
MQSeries error
code

blank MQRC=9999 MQRC=9999

MsgText a freeform field
for the error
description;

function/method
name for
informational
messages

MQRC_XXX_XXX_XXX MQRC_XXX_XXX_XXX

interfaceId interface control
document

Interface Control
Id

Interface Control Id Interface Control Id

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 72

instance occurrence of a
transaction

Hash value

Hash value

Hash Value

System hostname of the
system generating
the error

Hostname Hostname Hostname

programId Program id Program_id Program_id Program_id

ReturnCode specifies the status
of the function
upon completion;
valid values are:

0 – success

1 – unable to log
message

Message logging functions generate a file delimited as follows:

<Version> <hostname> <program_name> <Instance> <date_time> <severity> <interface_id>
<message text> <return code>

Error Handling:

Type Reporting/Communication
 Method Message

1 Error – continue processing Return code Unable to locate EAILOG environment
variable.

2 Error – continue processing Return code Unable to send message to centralized log.
3 Error – continue processing Return code Unable to read control record information.
4 Error – continue processing Return code Unable to write to local log.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 73

7 COMMITTING AND BACKING OUT UNITS OF WORK
This section describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work. The following terms, described below, are used in this section:

• Commit
• Back out
• Syncpoint coordination
• Syncpoint
• Unit of work
• Single-phase commit
• Two-phase commit

7.1 Committing and Backing Out
When a program puts a message on a queue within a unit of work, that message is made visible to other
programs only when the program commits the unit of work. To commit a unit of work, all updates must
be successful to preserve data integrity. If the program detects an error and decides that the put operation
should not be made permanent, it can back out the unit of work. When a program performs a back out,
MQSeries restores the queue by removing the messages that were put on the queue by that unit of work.
The way in which the program performs the commit and back out operations depends on the environment
in which the program is running.

When a program gets a message from a queue within a unit of work, that message remains on the queue
until the program commits the unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when the program commits the unit of
work. If the program backs out the unit of work, MQSeries restores the queue by making the messages
available to be retrieved by other programs. Changes to queue attributes (either by the MQSET call or by
commands) are not affected by the committing or backing out of units of work.

7.2 Syncpoint Coordination, Syncpoint, Unit of Work
Syncpoint coordination is the process by which units of work are either committed or backed out with
data integrity. The decision to commit or back out the changes is taken, in the simplest case, at the end of
a transaction. However, it can be more useful for an application to synchronize data changes at other
logical points within a transaction. These logical points are called syncpoints (or synchronization points)
and the period of processing a set of updates between two syncpoints is called a unit of work. Several
MQGET calls and MQPUT calls can be part of a single unit of work. The maximum number of messages
within a unit of work can be controlled by the DEFINE MAXSMSGS command on OS/390, or by the
MAXUMSGS attribute of the ALTER QMGR command on other platforms. See the MQSeries Command
Reference book for details of these commands.

7.3 Syncpoint Guidelines
A MQSeries application can specify on every put and get call whether the call is to be under syncpoint
control. To make a put operation operate under syncpoint control, use the MQPMO_SYNCPOINT value
in the Options field of the MQPMO structure when calling MQPUT. For a get operation, use the
MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If not explicitly choosing

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 74

an option, the default action depends on the platform. The syncpoint control default on OS/390 and
Tandem NSK is ‘yes’; for all other platforms, it is ‘no’.

If a program issues the MQDISC call while uncommitted requests exist, an implicit syncpoint occurs,
except on OS/390 batch with RRS. If the program ends abnormally, an implicit backout occurs. On
OS/390, an implicit syncpoint occurs if the program ends normally without first calling MQDISC.

For MQSeries for OS/390 programs, use the MQGMO_MARK_SKIP_BACKOUT option to specify that
a message should not be backed out if backout occurs (in order to avoid an ‘MQGET-error-backout’
loop).

7.3.1 Syncpoints in MQSeries for Windows NT, MQSeries on UNIX systems
Syncpoint support operates on two types of units of work: local and global. A local unit of work is one in
which the only resources updated are those of the MQSeries queue manager. Here syncpoint coordination
is provided by the queue manager itself using a single-phase commit procedure.

A global unit of work is one in which resources belonging to other resource managers, such as databases,
are also updated. MQSeries can coordinate such units of work itself or the units of work can also be
coordinated by an external commitment controller such as another transaction manager.

For full integrity, a two-phase commit procedure must be used. Two-phase commit can be provided by
XA-compliant transaction managers and databases such as IBM’s TXSeries and UDB. MQSeries Version
5 products (except MQSeries for OS/390) can coordinate global units of work using a two-phase commit
process.

7.3.2 Local units of work
Units of work that involve only the queue manager are called local units of work. Syncpoint coordination
is provided by the queue manager itself (internal coordination) using a single-phase commit process. To
start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the
appropriate syncpoint option. The unit of work is committed using MQCMIT or rolled back using
MQBACK. However, the unit of work also ends when the connection between the application and the
queue manager is broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of work is still active, the
unit of work is committed. If, however, the application terminates without disconnecting, the unit of work
is rolled back as the application is deemed to have terminated abnormally.

7.3.3 Global units of work
Use global units of work when needing to include updates to resources belonging to other resource
managers. Here the coordination may be internal or external to the queue manager:

7.3.4 Internal syncpoint coordination
Queue manager coordination of global units of work is supported only on MQSeries Version 5 products
except for MQSeries for OS/390. It is not supported in a MQSeries client environment. Here, the
coordination is performed by MQSeries. To start a global unit of work, the application issues the
MQBEGIN call.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 75

As input to the MQBEGIN call, supply the connection handle (Hconn), which is returned by the
MQCONN or MQCONNX call. This handle represents the connection to the MQSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate
syncpoint option. This means that MQBEGIN can be used to initiate a global unit of work that updates
local resources, resources belonging to other resource managers, or both. Updates made to resources
belonging to other resource managers are made using the API of that resource manager. However, it is not
possible to use the MQI to update queues that belong to other queue managers. MQCMIT or MQBACK
must be issued before starting further units of
work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase commit of all the
resource managers involved in the unit of work. A two-phase commit process is used whereby resource
managers (for example, XA-compliant database managers such as DB2, Oracle, and Sybase) are firstly all
asked to prepare to commit. If any resource manager signals that it cannot commit, each is asked to back
out instead. Alternatively, MQBACK can be used to roll back the updates of all the resource managers.

If an application disconnects (MQDISC) while a global unit of work is still active, the unit of work is
committed. If, however, the application terminates without disconnecting, the unit of work is rolled back
as the application is deemed to have terminated abnormally. The output from MQBEGIN is a completion
code and a reason code. When MQBEGIN is used to start a global unit of work, all the external resource
managers that have been configured with the queue manager are included. If there are no participating
resource managers (that is, no resource managers have been configured with the queue manager) or one or
more resource managers are not available, the call starts a unit of work and completes with a warning.

In these cases, the unit of work should include updates to only those resource managers that were
available when the unit of work was started. If one of the resource managers is unable to commit its
updates, all of the resource managers are instructed to roll back their updates, and MQCMIT completes
with a warning. In unusual circumstances (typically, operator intervention), a MQCMIT call may fail if
some resource managers commit their updates but others roll them back; the work is deemed to have
completed with a ‘mixed’ outcome. Such occurrences are diagnosed in the error log of the queue manager
so remedial action may be taken. A MQCMIT of a global unit of work succeeds if all of the resource
managers involved commit their updates. For a description of the MQBEGIN call, see the MQSeries
Application Programming Reference manual.

7.3.5 External syncpoint coordination
External syncpoint coordination occurs when a syncpoint coordinator other than MQSeries (e.g. CICS,
Encina, and Tuxedo) has been selected. MQSeries on a UNIX system or MQSeries for Windows NT will
register its interest in the outcome of the unit of work, with the syncpoint coordinator. This happens in
order to commit or roll back any uncommitted get or put operations as required. The external syncpoint
coordinator determines whether one- or two-phase commitment protocols are provided. When an external
coordinator is used MQCMIT, MQBACK, and MQBEGIN may not be issued. Calls to these functions
fail with the reason code MQRC_ENVIRONMENT_ERROR. The way in which an externally
coordinated unit of work is started is dependent on the programming interface provided by the syncpoint
coordinator. An explicit call may, or may not, be required. If an explicit call is required, and the
MQPUT call specifying the MQPMO_SYNCPOINT option is specified when a unit of work is not
started, the completion code MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 76

The syncpoint coordinator determines the scope of the unit of work. The state of the connection between
the application and the queue manager affects the success or failure of MQI calls that an application
issues, not the state of the unit of work. It is, for example, possible for an application to disconnect and
reconnect to a queue manager during an active unit of work and perform further MQGET and MQPUT
operations inside the same unit of work. This is known as a pending disconnect.

7.3.6 Interfaces to external syncpoint managers
MQSeries on UNIX systems and MQSeries for Windows NT support coordination of transactions by
external syncpoint managers which utilize the X/Open XA interface. This support is available only on
server configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require that each XA resource
manager supply its name. This is the string called name in the XA switch structure. The resource manager
for MQSeries on UNIX systems is named “MQSeries_XA_RMI”. For further details on XA interfaces
refer to XA documentation CAE Specification Distributed Transaction Processing: The XA Specification,
published by The Open Group.

In an XA configuration, MQSeries on UNIX systems and MQSeries for Windows NT fulfill the role of an
XA Resource Manager. An XA syncpoint coordinator can manage a set of XA Resource Managers, and
synchronize the commit or backout of transactions in both Resource Managers.

For a statically-registered resource manager:

1. An application notifies the syncpoint coordinator that it wishes to start a transaction.

2. The syncpoint coordinator issues a call to any resource managers that it knows of, to notify them
of the current transaction.

3. The application issues calls to update the resources managed by the resource managers associated
with the current transaction.

4. The application requests that the syncpoint coordinator either commits or rolls back the
transaction.

5. The syncpoint coordinator issues calls to each resource manager using two-phase commit
protocols to complete the transaction as requested. The XA specification requires each Resource
Manager to provide a structure called an XA Switch. This structure declares the capabilities of the
Resource Manager, and the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure:

MQRMIXASwitch
Static XA resource management

MQRMIXASwitchDynamic
Dynamic XA resource management

The structure is found in the following libraries:
mqmxa.lib
Windows NT XA library for Static resource management
mqmenc.lib
Sun Solaris and Windows NT Encina XA library for Dynamic resource management

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 77

libmqmxa.a
UNIX systems XA library (non-threaded) for both Static and Dynamic
resource management
libmqmxa_r.a
UNIX systems (except Sun Solaris) XA library (threaded) for both Static and Dynamic resource
management. The method that must be used to link them to an XA syncpoint coordinator is defined by the
coordinator. Also, consult the documentation provided by that coordinator to determine how to enable
MQSeries to cooperate with the XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator should be the name
of the queue manager that is to be administered. This takes the same form as the queue manager name
passed to MQCONN or MQCONNX, and may be blank if the default queue manager is to be used.

7.4 MQSeries Syncpoint Calls for OS/390
MQSeries for OS/390 provides the MQCMIT and MQBACK calls. Use these calls in OS/390 batch
programs to tell the queue manager that all the MQGET and MQPUT operations since the last syncpoint
are to be made permanent (committed) or are to be backed out. To commit and back out changes in other
environments:

CICS Use commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK.

IMS Use the IMS syncpoint facilities, such as the GU (get unique) to the IOPCB,
CHKP (checkpoint), and ROLB (rollback) calls.

RRS Use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate.

Note: SRRCMIT and SRRBACK are ‘native’ RRS commands, and are not
MQI calls.

For backward compatibility, the CSQBCMT and CSQBBAK calls are available as synonyms for
MQCMIT and MQBACK. These are described fully in the MQSeries Application Programming
Reference manual.

7.5 MQSeries Syncpoint Calls on Windows NT and UNIX systems
The following products provide the MQCMIT and MQBACK calls:

• MQSeries for Windows NT
• MQSeries on UNIX systems

Use syncpoint calls in programs to tell the queue manager that all the MQGET and MQPUT operations
since the last syncpoint are to be made permanent (committed) or are to be backed out. To commit and
back out changes in the CICS environment, use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 78

7.6 Single-phase Commit
A single-phase commit process is one in which a program can commit updates to a queue without
coordinating its changes with other resource managers.

7.7 Two-phase Commit
A two-phase commit process is one in which updates that a program has made to MQSeries queues can be
coordinated with updates to other resources (for example, databases under the control of DB2). Under
such a process, updates to all resources are committed or backed out together. To help handle units of
work, MQSeries provides the BackoutCount attribute. This is incremented each time a message, within a
unit of work, is backed out. If the message repeatedly causes the unit of work to abend, the value of the
BackoutCount finally exceeds that of the BackoutThreshold. This value is set when the queue is defined.
In this situation, the application can choose to remove the message from the unit of work and put it onto
another queue, as defined in BackoutRequeueQName . When the message is moved, the unit of work can
commit.

Transaction managers (such as CICS, IMS, Encina, and Tuxedo) can participate in two-phase commit,
coordinated with other recoverable resources. This means that the queuing functions provided by
MQSeries can be brought within the scope of a unit of work, managed by the transaction manager.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 79

8 APPENDIX A: REFERENCE MATERIAL
For more information on the software and hardware prerequisites for the OS/390, please refer to the
“MQSeries for OS/390 v5.2 Program Directory” and the “MQSeries for OS/390 v5.2 Concepts and
Planning Guide” books on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on WebSphere Application Server prerequisites, please refer to the “MQSeries for
Windows NT and 2000 Quick Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on EAI BUS prerequisites, please refer to the “MQSeries for Windows NT and
2000 Quick Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on DLSS prerequisites, please refer to the “MQSeries for Compaq (DIGITAL)
OpenVMS System Management” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on PEPS prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on BTrade prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa.

For more information on how to customize MQSeries objects for application specific requirements, please
refer to the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on MQSeries application error handling, event monitoring and MQSI error
handling, please refer to the following books:
“MQSeries Application Programming Reference”
“MQSeries Event Monitoring”
“MQSeries Integrator Introduction and Planning”
on the IBM website: http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on managing clusters and developing a custom cluster workload exit, please refer to
the “MQSeries Queue Manager Clusters” book on the IBM website:

http://www-4.ibm.com/software/ts/mqseries/library/manuals

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 80

For more information on the MQSeries Integrator Control Center and the MQSeries commands and
control commands, please refer to the following books:
“MQSeries Integrator Using the Control Center”
“MQSeries MQSC Command Reference”
“MQSeries Systems Administration”
“MQSeries for Compaq (DIGITAL) OpenVMS System Management”
“MQSeries for OS/390 System Administration Guide”
on the IBM website: http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

For more information on the MQSI configuration manger, please refer to the “MQSeries Integrator Using
the Control Center” book on the IBM website:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

MQSeries Application Programming Guide can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Application Programming Reference can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Application Messaging Interface manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Using C++ manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Using Java manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 81

9 APPENDIX B: GLOSSARY

A

active log
See recovery log.

adapter
An adapter is an attachment facility (program) that enables applications to access MQSeries services.
More specifically an adapter is used isolate an application implementing an interface which manages
format conversions and application specific behavior.

alias queue object
A MQSeries object, the name of which is an alias for a base queue defined to the local queue
manager. When an application or a queue manager uses an alias queue, the alias name is resolved and
the requested operation is performed on the associated base queue.

alternate user security
A security feature in which the authority of one user ID can be used by another user ID; for example,
to open a MQSeries object.

archive log
See recovery log.

asynchronous messaging
A method of communication between programs in which programs place messages on message
queues. With asynchronous messaging, the sending program proceeds with its own processing
without waiting for a reply to its message. Contrast with synchronous messaging.

authorization service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a service
that provides authority checking of commands and MQI calls for the user identifier associated with
the command or call.

B
bootstrap data set (BSDS)

A VSAM data set that contains:
• An inventory of all active and archived log data sets known to MQSeries for OS/390
• A wrap-around inventory of all recent MQSeries for OS/390 activity

The BSDS is required if the MQSeries for OS/390 subsystem has to be restarted.

browse
In message queuing, to use the MQGET call to copy a message without removing it from the queue.
See also get.

browse cursor
In message queuing, an indicator used when browsing a queue to identify the message that is next in
sequence.

BSDS
Bootstrap data set.

C

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 82

channel
See message channel.

channel definition file (CDF)
In MQSeries, a file containing communication channel definitions that associate transmission queues
with communication links.

channel event
An event indicating that a channel instance has become available or unavailable. Channel events are
generated on the queue managers at both ends of the channel.

checkpoint
A time when significant information is written on the log. Contrast with syncpoint. In MQSeries on
UNIX systems, the point in time when a data record described in the log is the same as the data record
in the queue. Checkpoints are generated automatically and are used during the system restart process.

circular logging
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping all restart data in a ring of log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this point, logging goes back to the first file in the
ring and starts again, if the space has been freed or is no longer needed. Circular logging is used
during restart recovery, using the log to roll back transactions that were in progress when the system
stopped. Contrast with linear logging.

client
A run-time component that provides access to queuing services on a server for local user applications.
The queues used by the applications reside on the server. See also MQSeries client.

client application
An application, running on a workstation and linked to a client, that gives the application access to
queuing services on a server.

cluster
A network of queue managers that are logically associated in some way.

command
In MQSeries, an administration instruction that can be carried out by the queue manager.

command server
The MQSeries component that reads commands from the system-command input queue, verifies
them, and passes valid commands to the command processor.

connect
To provide a queue manager connection handle, which an application uses on subsequent MQI calls.
The connection is made either by the MQCONN call, or automatically by the MQOPEN call.

context
Information about the origin of a message.

context security
In MQSeries, a method of allowing security to be handled such that messages are obliged to carry
details of their origins in the message descriptor.

control command
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a
command that can be entered interactively from the operating system command line. Such a

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 83

command requires only that the MQSeries product be installed; it does not require a special utility or
program to run it.

D
data bag

In the MQAI, a bag that allows you to handle properties (or parameters) of objects.

data conversion interface (DCI)
The MQSeries interface to which customer- or vendor-written programs that convert application data
between different machine encodings and CCSIDs must conform. A part of the MQSeries
Framework.

DB2
A relational database marketed by IBM. Also known as UDB or Universal Database.

DCI
Data conversion interface.

dead-letter queue (DLQ)
A queue to which a queue manager or application sends messages that it cannot deliver to their
correct destination.

dead-letter queue handler
A MQSeries-supplied utility that monitors a dead-letter queue (DLQ) and processes messages on the
queue in accordance with a user-written rules table.

distributed queue management (DQM)
In message queuing, the setup and control of message channels to queue managers on other systems.

DLQ
Dead-letter queue.

dual logging
A method of recording MQSeries for OS/390 activity, where each change is recorded on two data
sets, so that if a restart is necessary and one data set is unreadable, the other can be used. Contrast
with single logging.

dynamic queue
A local queue created when a program opens a model queue object. See also permanent dynamic
queue and temporary dynamic queue.

E
EID - Enterprise Integration Domain

One of five domains within IAFeB developed to provide an enterprise-wide scalable framework that
allows multiple front-end applications (such as web and call centers) to inter-operate with back-end
applications (such as policy administration and claims systems) in an effective and efficient manner.

event data

In an event message, the part of the message data that contains information about the event (such as
the queue manager name, and the application that gave rise to the event). See also event header.

event message
Contains information (such as the category of event, the name of the application that caused the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 84

event, and queue manager statistics) relating to the origin of an instrumentation event in a network of
MQSeries systems.

event queue
The queue onto which the queue manager puts an event message after it detects an event. Each
category of event (queue manager, performance, or channel event) has its own event queue.

F
Framework

In MQSeries, a collection of programming interfaces that allow customers or vendors to write
programs that extend or replace certain functions provided in MQSeries products. The interfaces are:

• MQSeries data conversion interface (DCI)
• MQSeries message channel interface (MCI)
• MQSeries name service interface (NSI)
• MQSeries security enabling interface (SEI)
• MQSeries trigger monitor interface (TMI)

G
get

In message queuing, to use the MQGET call to remove a message from a queue. See also browse.

H
HACMP

High Availability Cluster Multi-Processing - IBM's high availability offering for AIX platforms to
provide dynamic fail-over within a cluster of separate AIX systems.

I
IAA

Insurance Application Architecture. Insurance business object model.

IAFeB
Insurance architecture for e-business. Framework of common insurance specific functionality built on
top MQSeries and MQSeries Integrator. Used by insurance companies to build eBusiness/integration
systems upon.

 in-doubt unit of recovery
In MQSeries, the status of a unit of recovery for which a syncpoint has been requested but not yet
confirmed.

initiation queue
A local queue on which the queue manager puts trigger messages.

installable services
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT,
additional functionality provided as independent components. The installation of each component is
optional: in-house or third-party components can be used instead. See also authorization service,
name service, and user identifier service.

instrumentation event
A facility that can be used to monitor the operation of queue managers in a network of MQSeries
systems. MQSeries provides instrumentation events for monitoring queue manager resource
definitions, performance conditions, and channel conditions. Instrumentation events can be used by a
user-written reporting mechanism in an administration application that displays the events to a system

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 85

operator..

L
LDAP

Lightweight directory access protocol.

linear logging
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files. New files are added to the sequence as
necessary. The space in which the data is written is not reused until the queue manager is restarted.
Contrast with circular logging.

listener
In MQSeries distributed queuing, a program that monitors for incoming network connections.

local definition
A MQSeries object belonging to a local queue manager.

local definition of a remote queue
A MQSeries object belonging to a local queue manager. This object defines the attributes of a queue
that is owned by another queue manager. In addition, it is used for queue-manager aliasing and reply-
to-queue aliasing.

local queue
A queue that belongs to the local queue manager. A local queue can contain a list of messages waiting
to be processed. Contrast with remote queue.

local queue manager
The queue manager to which a program is connected and that provides message queuing services to
the program. Queue managers to which a program is not connected are called remote queue
managers, even if the queue managers are running on the same system as the program.

log
In MQSeries, a file recording the work done by queue managers while the queue managers receive,
transmit, and deliver messages. The log file is used to recover in the event of failure.

log control file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the file
containing information needed to monitor the use of log files (for example, their size and location,
and the name of the next available file).

log file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a queue manager are recorded. If the primary
log files become full, MQSeries allocates secondary log files.

M
message

In message queuing applications, a communication sent between programs. See also persistent
message and nonpersistent message. In system programming, information intended for the terminal
operator or system administrator.

message channel
In distributed message queuing, a mechanism for moving messages from one queue manager to
another. A message channel comprises two message channel agents (a sender at one end and a

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 86

receiver at the other end) and a communication link. Contrast with MQI channel.

message channel agent (MCA)
A program that transmits prepared messages from a transmission queue to a communication link, or
from a communication link to a destination queue. See also message queue interface.

message channel interface (MCI)
The MQSeries interface to which customer- or vendor-written programs that transmit messages
between a MQSeries queue manager and another messaging system must conform. A part of the
MQSeries Framework.

message descriptor
Control information describing the message format and presentation that is carried as part of a
MQSeries message. The format of the message descriptor is defined by the MQMD structure.

message priority
In MQSeries, an attribute of a message that can affect the order in which messages on a queue are
retrieved, and whether a trigger event is generated.

message queue
Synonym for queue.

message queue interface (MQI)
The programming interface provided by the MQSeries queue managers. This programming interface
allows application programs to access message queuing services.

message queuing
A programming technique in which each program within an application communicates with the other
programs by putting messages on queues.

messaging
See synchronous messaging and asynchronous messaging.

model queue object
A set of queue attributes that act as a template when a program creates a dynamic queue.

MQSeries – Message Queue Series
A family of IBM licensed programs that provides message queuing services across a broad array of
operating system platforms and network protocols.

MQSeries Administration Interface (MQAI)
A programming interface to MQSeries.

MQSeries client
Part of a MQSeries product that can be installed on a system without installing the full queue
manager. The MQSeries client accepts MQI calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC)
Human readable commands, uniform across all platforms, that are used to manipulate MQSeries
objects. Contrast with programmable command format (PCF).

MQSI - MQSeries Integrator
Second generation message broker product the provides basic message routing and data translation
capabilities.

MQWF
MQSeries Workflow. A workflow product built to executed long running transactions and other

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 87

workflow functions over a MQSeries foundation.

N
namelist

A MQSeries object that contains a list of names, for example, queue names.

name service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
facility that determines which queue manager owns a specified queue.

name service interface (NSI)
The MQSeries interface to which customer- or vendor-written programs that resolve queue-name
ownership must conform. A part of the MQSeries Framework.

nonpersistent message
A message that does not survive a restart of the queue manager. Contrast with persistent message.

O
object

In MQSeries, an object is a queue manager, a queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object authority manager (OAM)
In MQSeries on UNIX systems, MQSeries for AS/400, and MQSeries for Windows NT, the default
authorization service for command and object management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

output log-buffer
In MQSeries for OS/390, a buffer that holds recovery log records.

P
page set

A VSAM data set used when MQSeries for OS/390 moves data (for example, queues and messages)
from buffers in main storage to permanent backing storage (DASD).

performance event
A category of event indicating that a limit condition has occurred.

persistent message
A message that survives a restart of the queue manager. Contrast with nonpersistent message.

platform
In MQSeries, the operating system under which a queue manager is running.

point of recovery
In MQSeries for OS/390, the term used to describe a set of backup copies of MQSeries for OS/390
page sets and the corresponding log data sets required to recover these page sets. These backup copies
provide a potential restart point in the event of page set loss (for example, page set I/O error).

principal
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority manager for checking authorizations to system
resources.

process definition object
A MQSeries object that contains the definition of a MQSeries application. For example, a queue

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 88

manager uses the definition when it works with trigger messages.

programmable command format (PCF)
A type of MQSeries message used by:

• User administration applications, to put PCF commands onto the system command input
queue of a specified queue manager

• User administration applications, to get the results of a PCF command from a specified queue
manager

• A queue manager, as a notification that an event has occurred
Contrast with MQSC.

Q
queue

A MQSeries object. Message queuing applications can put messages on, and get messages from, a
queue. A queue is owned and maintained by a queue manager. Local queues can contain a list of
messages waiting to be processed.

queue manager
A system program that provides queuing services to applications. It provides an application
programming interface so that programs can access messages on the queues that the queue manager
owns. See also local queue manager and remote queue manager. A MQSeries object that defines the
attributes of a particular queue manager.

queuing
See message queuing.

R
recovery log

In MQSeries for OS/390, data sets containing information needed to recover messages, queues, and
the MQSeries subsystem. MQSeries for OS/390 writes each record to a data set called the active log.
When the active log is full, its contents are off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

remote queue
A queue belonging to a remote queue manager. Programs can put messages on remote queues, but
cannot get messages from remote queues. Contrast with local queue.

remote queue manager
To a program, a queue manager that is not the one to which the program is connected.

remote queue object
See local definition of a remote queue.

remote queuing
In message queuing, the provision of services to enable applications to put messages on queues
belonging to other queue managers.

reply message
A type of message used for replies to request messages.

request message
A type of message used to request a reply from another program.

RESLEVEL
In MQSeries for OS/390, an option that controls the number of CICS user IDs checked for API-
resource security in MQSeries for OS/390.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 89

return codes
The collective name for completion codes and reason codes.

S
security enabling interface (SEI)

The MQSeries interface to which customer- or vendor-written programs that check authorization,
supply a user identifier, or perform authentication must conform. A part of the MQSeries Framework.

server
(1) In MQSeries, a queue manager that provides queue services to client applications running on a
remote workstation. (2) The program that responds to requests for information in the particular two-
program, information-flow model of client/server. See also client.

signaling
In MQSeries for OS/390 and MQSeries for Windows 2.1, a feature that allows the operating system
to notify a program when an expected message arrives on a queue.

single logging
A method of recording MQSeries for OS/390 activity where each change is recorded on one data set
only. Contrast with dual logging.

synchronous messaging
A method of communication between programs in which programs place messages on message
queues. With synchronous messaging, the sending program waits for a reply to its message before
resuming its own processing. Contrast with asynchronous messaging.

system.command.input queue
A local queue on which application programs can put MQSeries commands. The commands are
retrieved from the queue by the command server, which validates them and passes them to the
command processor to be run.

T
thread

In MQSeries, the lowest level of parallel execution available on an operating system platform.

trace
In MQSeries, a facility for recording MQSeries activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See also global trace and performance trace.

transmission queue
A local queue on which prepared messages destined for a remote queue manager are temporarily
stored.

trigger event
An event (such as a message arriving on a queue) that causes a queue manager to create a trigger
message on an initiation queue.

triggering
In MQSeries, a facility allowing a queue manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message
A message containing information about the program that a trigger monitor is to start.

trigger monitor
A continuously-running application serving one or more initiation queues. When a trigger message

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 2.0
EAI APPLICATION ENABLEMENT GUIDE

10/31/01 54 – 54.1.7 90

arrives on an initiation queue, the trigger monitor retrieves the message. It uses the information in the
trigger message to start a process that serves the queue on which a trigger event occurred.

trigger monitor interface (TMI)
The MQSeries interface to which customer- or vendor-written trigger monitor programs must
conform. A part of the MQSeries Framework.

U
undelivered-message queue

See dead-letter queue.

unit of recovery
A recoverable sequence of operations within a single resource manager. Contrast with unit of work.

unit of work
A recoverable sequence of operations performed by an application between two points of consistency.
A unit of work begins when a transaction starts or after a user-requested syncpoint. It ends either at a
user-requested syncpoint or at the end of a transaction. Contrast with unit of recovery.

user identifier service (UIS)
In MQSeries for OS/2 Warp, the facility that allows MQI applications to associate a user ID, other
than the default user ID, with MQSeries messages.

utility
In MQSeries, a supplied set of programs that provide the system operator or system administrator
with facilities in addition to those provided by the MQSeries commands. Some utilities invoke more
than one function.

X
XML

Extensible markup language

